This course explores the physical processes that control Earth's atmosphere, ocean, and …
This course explores the physical processes that control Earth's atmosphere, ocean, and climate. Quantitative methods for constructing mass and energy budgets. Topics include clouds, rain, severe storms, regional climate, the ozone layer, air pollution, ocean currents and productivity, the seasons, El Nio, the history of Earth's climate, global warming, energy, and water resources.
This problem-based learning module is designed to master the Ohio Learning standard …
This problem-based learning module is designed to master the Ohio Learning standard of Science in Earth and Space Science number 2, Cycles and Patterns of Earth and the Moon. Thermal-energy transfers in the ocean and the atmosphere contribute to the formation of currents, which influence global climate patterns. Students will be exploring the various factors affecting the climate patterns we experience due to thermal energy. Students will work independently as well as with a partner. The final product is expected to be presented to their peers and teachers. This blended module includes teacher-led instruction, student-led stations, real world data analysis and technology integrated investigations.
In this demonstration, cook a cake using the heat produced when the …
In this demonstration, cook a cake using the heat produced when the cake batter conducts an electric current. Because of safety concerns, this activity should be conducted as a demonstration only and learners should be kept at a safe distance.
An electronics kit in your computer! Build circuits with resistors, light bulbs, …
An electronics kit in your computer! Build circuits with resistors, light bulbs, batteries, and switches. Take measurements with the realistic ammeter and voltmeter. View the circuit as a schematic diagram, or switch to a life-like view.
Earth Systems and Changes from Educational Service District 123, provides professional learning …
Earth Systems and Changes from Educational Service District 123, provides professional learning resources for K-5 teachers around elementary Earth Science and Climate Science related standards content.
It also provides learning to assist in the development of classroom tasks: Claims, Evidence Reasoning, and Models and Explanations, that can be used formatively to elicit student ideas and to support changes in student thinking over time.
License: License: Commons Attribution 4.0 (CC BY) Except where otherwise noted, this template by Educational Service District 123 is licensed under a Creative Commons Attribution License. All logos and trademarks are property of their respective owners. Content within template is the copyright of the creator.
This 90-minute activity features six interactive molecular models to explore the relationships …
This 90-minute activity features six interactive molecular models to explore the relationships among voltage, current, and resistance. Students start at the atomic level to explore how voltage and resistance affect the flow of electrons. Next, they use a model to investigate how temperature can affect conductivity and resistivity. Finally, they explore how electricity can be converted to other forms of energy. The activity was developed for introductory physics courses, but the first half could be appropriate for physical science and Physics First. The formula for Ohm's Law is introduced, but calculations are not required. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The Concord Consortium develops deeply digital learning innovations for science, mathematics, and engineering.
This article highlights hands-on or multimedia lesson plans about oceans. Science lessons …
This article highlights hands-on or multimedia lesson plans about oceans. Science lessons are paired with suggested literacy lesson plans. All lessons are aligned to national standards.
This page is part of NASA's Earth Observatory website. It features text …
This page is part of NASA's Earth Observatory website. It features text and a scientific illustration to describe how the ocean interacts with the atmosphere, physically exchanging heat, water, and momentum. It also includes links to related data sets, other ocean fact sheets, and relevant satellite missions.
In this activity, students learn about ocean currents and the difference between …
In this activity, students learn about ocean currents and the difference between salt and fresh water. They use colored ice cubes to see how cold and warm water mix and how this mixing causes currents. Also, students learn how surface currents occur due to wind streams. Lastly, they learn how fresh water floats on top of salt water, the difference between water in the ocean and fresh water throughout the planet, and how engineers are involved in the design of ocean water systems for human use.
Modern oceanography has been built on a legacy of centuries of seagoing …
Modern oceanography has been built on a legacy of centuries of seagoing dating back to ancient times. Join distinguished Scripps Emeritus Professor Joe Reid as he describes what the earliest sailors knew about the oceans and how technical achievements through the ages have allowed ocean explorers to venture to the far reaches of the globe. (51 minutes)
In this activity, learners construct a device out of a piezoelectric igniter, …
In this activity, learners construct a device out of a piezoelectric igniter, like those used as barbecue lighters. Learners use the device to remotely start current flowing in a simple series circuit containing a small electric fan.
Who doesn’t love to toss sticks or leaves into a stream and …
Who doesn’t love to toss sticks or leaves into a stream and watch them move in the current? Who doesn’t love mysteries? In Stream Detectives, students get to explore a stream, figuring out how the currents move by using stick and leaf “boats” to track the speed and direction of different currents. Students learn about some of the factors that affect current speed and direction (hydrodynamics), how water shapes stone (weathering), how the channel of a stream changes over time (stream morphology), and how the speed of the current affects the size of sediment that it leaves behind (erosion). Then, they apply this knowledge by using a Stream Detective Key to figure out how the stream features they see in the moment formed in the past, and to predict how they might change in the future. Students learn skills and concepts they can use to interpret and learn about any stream they encounter.
The basic objective of Unified Engineering is to give a solid understanding …
The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.