Is groundwater mining sustainable? In Unit 4 students compare and contrast long-term …
Is groundwater mining sustainable? In Unit 4 students compare and contrast long-term (decades) groundwater well levels in six states representing the East Coast, West Coast, and Midwest Plains states. Satellite imagery maps of the well locations will give students an idea of the land cover, specifically the presence of irrigated crops. Using groundwater well data from the USGS, students will recognize the depletion of aquifers in the western United States (e.g., the Ogallala/High Plains Aquifer), or groundwater mining, as an unsustainable practice.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this unit, students explore water privatization and freshwater access issues within …
In this unit, students explore water privatization and freshwater access issues within the geophysical and cultural context of Cochabamba, Bolivia. Students identify topographical features that create rain shadows and their relationship to the water cycle. As they discuss several alternative models for supplying water to the residents of Cochabamba, they link concepts of environmental justice to the Cochabamba Water Wars of 2000.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students will use SoilWeb -- , a smartphone and web application that …
Students will use SoilWeb -- , a smartphone and web application that pulls detailed soil survey data from both the 1:24,0000 Soil Survey Geographic database (SSURGO) and the 1:250,000 scale State Soil Geographic database (STATSGO). Students will retrieve soil information for the soil beneath them. They will diagram soil horizons and compare them to a profile of soil organic matter and determine the most fertile horizon. Finally, students will complete a jigsaw activity comparing local soil erosion rates, soil horizons, and soil organic matter to other sites. After students share site comparisons, they will reflect on our agricultural future and solutions needed to mitigate lost soil resources. They will discuss how the speed at which we implement soil solutions will impact society and the economy.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students explore water quality and freshwater access issues around the globe. The …
Students explore water quality and freshwater access issues around the globe. The activities require students to investigate region-specific water problems in different parts of the world and analyze how those issues are sometimes remedied. The materials in this unit may be used as a stand-alone day of instruction or as part of the complete Environmental Justice and Freshwater Resources InTeGrate Module.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This is the second module of a two week-long unit on hydrology …
This is the second module of a two week-long unit on hydrology in an upper-level undergraduate course on the Critical Zone. After Unit 5.1, students should have a basic understanding of the fluxes and reservoirs in the context of a tree and basin water balance. In Unit 5.2, students will learn how to apply environmental sensor data to larger catchment or regional scales (Part 1) and will connect hydrologic processes in the Critical Zone to societal needs through a quantitative resource availability and decision-making exercise (Part 2).
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Units 3 and 4 of this module explored how water resources are …
Units 3 and 4 of this module explored how water resources are used for agriculture in the United States and how this can vary depending on location. In Unit 5, students explore how agricultural practices can affect the water quality in streams, rivers, lakes, and coastal areas. Important concepts in this unit include processes that transport suspended material (e.g., sediment) and dissolved material (e.g., nutrients) away from crop fields and into regional water bodies. The effects of dissolved nutrients on the health of the water ecosystems will be presented with examples of hypoxic zones in coastal areas and lake eutrophication. This last unit is well-suited to foster student advancement in systems thinking.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This unit has students build on a system diagram, to include new …
This unit has students build on a system diagram, to include new knowledge about quantitative values and relationships. They will also write about and discuss what they know about their systems, the questions that still remain, and how to find answers to their questions.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this two-day activity spanning Units 4 and 5, students analyze spatial …
In this two-day activity spanning Units 4 and 5, students analyze spatial variation in climate through a map-based jigsaw exploration of NASA's Earth's Radiation Budget Experiment (ERBE) data. By the end of the activity students will have created maps and graphs illustrating the global radiation balance and used their knowledge to develop and refine hypotheses regarding impacts of global climate change.
In Unit 5 (day 2 of activity) students work in new groups that include members who analyzed each of the three ERBE datasets from day 1 of the activity (Unit 4). These synthesis groups work together to summarize their observations and infer regions of radiation excess and deficit in graph and map forms. These new figures are used to facilitate a whole-class discussion of the global radiation balance. The unit ends with a discussion of how atmospheric circulation acts to balance the radiation budget and the impacts of a changing climate on other Earth systems.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Unit 5 will delve more into an examination of food security using …
Unit 5 will delve more into an examination of food security using online ArcGIS. The class begins with a GIS-based exploration of data available for the three regions. The rest of the class period is provided for group work creating an action plan for a food insecurity issue teams have identified for their region. Students will utilize their maps from ArcGIS Online within their action plan. One component of the summative assessment, to be submitted in Unit 6, is a community-based action plan of how the selected community can increase food security and lessen vulnerability.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students explore the classic case of Love Canal, New York, in which …
Students explore the classic case of Love Canal, New York, in which Lois Gibbs -- originally described as a "hysterical housewife" -- mobilized her community and called attention to the contamination of groundwater by buried hazardous waste and the resulting impact on the health of local residents. The activities require the students to investigate the history of events at Love Canal. The materials in this unit may be used as a stand-alone day of instruction or as part of the complete Environmental Justice and Freshwater Resources InTeGrate Module.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this two-day activity, students monitor an evolving volcanic crisis at a …
In this two-day activity, students monitor an evolving volcanic crisis at a convergent plate boundary (Cascadia). Using monitoring data and geologic hazard maps, students make a series of forecasts for the impending eruption and associated risks. By the end of the activity, students will have learned the outcome of the eruption and assess the impacts of the eruption of Mount Rainier on specific locations around the volcano. This unit begins by having students examine past volcanic eruptions at Mount St. Helens, associated with the Cascadia convergent plate boundary, through firsthand accounts by United States Geological Survey (USGS) personnel who describe their work monitoring the geologic activity and some associated impacts. During class on the first day (Unit 5), students will begin working in small groups to interpret one of three data sets used to monitor volcanic activity (seismic, gas and ash emissions, and tilt). During prework and in-class activities for day 2 (Unit 6), students will update their predictions by combining information from all three data sets in mixed groups in which students act as "experts" for a particular data set. The exercise culminates with students assessing the impacts of a simulated volcanic eruption at their assigned locations.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students use what they have learned in the previous units to link …
Students use what they have learned in the previous units to link the above-ground part of the rock cycle (driven by the hydrologic cycle, energy from the Sun, and gravity) to the below-ground part of the rock cycle driven by Earth's internal heat energy. This unit is focused on group thinking: interpreting a rock cycle diagram and the role of the hydrologic cycle, identifying energy transfers (including sources and sinks), and describing hypothetical rock material transfer pathways. Students also make connections between erosion and plate tectonics through analysis of a reading, "How Erosion Builds Mountains."
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Unit 5 addresses the concept of Net Zero Water of buildings. Net …
Unit 5 addresses the concept of Net Zero Water of buildings. Net Zero Water can be defined in different ways. For this module it means a building's water needs are supplied 100% from harvested rainwater or water that is recycled on site. Reducing indoor and outdoor water use is a key element. Reading and videos are assigned to aid students grasping the concept of Net Zero Water as applied to buildings. A spreadsheet tool from the U.S. Green Building Council is introduced and used to estimate indoor water demand for baseline and design (water conservation) scenarios. In addition, this unit links to Unit 4 by including an estimate for outdoor water demand. The central activity for the unit is an active learning team exercise to analyze indoor water use reduction for a case study building and evaluate Net Zero Water.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students will review current ocean pressures related to overfishing and human impacts …
Students will review current ocean pressures related to overfishing and human impacts on ocean ecosystems. By examining data collected in relation to the presence of marine reserves, students will explore long-term strategies for protecting ocean resources. Students will review scientific data to assess biomass, biodiversity, and reproductive success of fishery stocks in a marine protected area (MPA) and propose a location for the establishment of a marine reserve in the Channel Islands, California.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students will investigate how the factors that influence erosion work together to …
Students will investigate how the factors that influence erosion work together to produce an overall erosion rate. In agricultural areas, these factors are rainfall-runoff erosivity, soil erodibility, slope characteristics, and agricultural practices. Students will analyze changes in precipitation predicted by climate change models to consider how a changing climate could influence erosion rates in agricultural areas.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this unit, student groups will use sensory data (scents and/or sounds) …
In this unit, student groups will use sensory data (scents and/or sounds) collected in the field to create maps of the sensory environment and relate their findings to larger environmental problems identified in their guiding questions and hypotheses. This unit is designed to build upon prior units in which students develop guiding questions and hypotheses, field data collection protocols, and field investigation plans. The field investigation will require a base map on which to record data and a final map on which to display data and characterize the study area and environmental impact of the mapped data. The base map will be derived from aerial imagery if the investigation site is outside. The base map will be derived from a building schematic or floor map if an interior location is mapped. Class time will be devoted to developing maps on which students will display the data collected in the field. Students will use Google Earth or other online resources to obtain aerial (or other schematic) imagery of their study area. They may use an aerial image as a base map or they may draw their own maps based on the aerial imagery. If the site is indoors, a blueprint or floor plan can be the base map, or students can draw their own maps based on an existing image or schematic. Sensory mapping allows students to identify scent plumes as they migrate away from source locations. Odor plumes and sounds are analogous to plumes of contaminants that migrate through groundwater, surface water, and air. In many instances, the presence of unusual odors is an indicator of migrating contaminants and can lead to sampling by environmental professionals (including geoscientists) to confirm and quantify contaminant migration through the environment. These maps serve as representations of the complex odor or sound systems in the students' chosen geographical areas.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this unit, students will learn about the dynamic movement of nutrients …
In this unit, students will learn about the dynamic movement of nutrients among and within ecosystems primarily through the reading and discussion of scientific literature. This unit is generally subdivided into three sections: (1) allochthonous inputs (2) the role of organisms in biogeochemical cycles and how ecological theory can be applied to biogeochemistry and (3) how biogeochemical processes can assist in creating solutions for humanity's grand challenges. This unit is designed to provide students with the opportunity to develop their reading and interpretation of scientific literature. Students will also become familiar with the utility of isotopic techniques and their use in biogeochemistry through readings and data analysis of carbon and nitrogen isotopic data sets. Chosen scientific articles are provided, each with their own set of reading questions. Additionally, short introductory materials are provided to introduce students to some of the general concepts and processes in the study of biogeochemistry.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this week-long unit students will explore Critical Zone function and dynamics …
In this week-long unit students will explore Critical Zone function and dynamics as they relate to nutrient cycling in agricultural systems and nutrient pollution into aquatic systems. This unit is generally subdivided into three sections: (1) nutrient pollution (2) agricultural importance and (3) Critical Zone function and dynamics in relation to nutrient cycling. The students will use data sets, interactive activities, primary literature, and videos to allow them to examine the role that the CZ plays and how that role changes with differing land uses. Important present-day topics of food production, clean water, nutrient pollution, and sustainable agriculture are examined using a CZ lens. Students will interact with each other on a variety of scales (individual, small groups, entire class) and using a variety of modes (presentations, written reports, question and answers, and class discussion) in this unit. Additionally, optional activities are provided if lab activities are able to be accommodated. The unit ends with a summative assessment assignment that is based on an innovative call for proposals to combat one of America's most widespread, costly, and challenging environmental problems: nutrient pollution.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students will utilize the desert Southwest region of the United States and …
Students will utilize the desert Southwest region of the United States and the Ogallala Aquifer in a case study to evaluate issues regarding groundwater and its scarcity. Groundwater is often seen as a limitless resource in the Southwest since there is little regulation controlling the amount that is withdrawn (Rule of Capture). This mentality has led to overuse and to the dwindling supply of groundwater in many parts of the Ogallala Aquifer. This module will help students connect groundwater's role in the hydrological cycle to issues of inequity that can occur when groundwater is not properly regulated.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this unit, students address the issue of groundwater demands and environmental …
In this unit, students address the issue of groundwater demands and environmental justice in the arid Southwest, a region with some of the largest percentages of Hispanics and Latinos in the United States. Students discuss the Rule of Capture, the overuse of water resources, and the dwindling supply of groundwater in many parts of the Ogallala Aquifer. Students connect groundwater's role to the hydrological cycle and consider how issues of inequity can occur when groundwater is not properly regulated.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.