This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Neurotensin is a small protein found throughout the central nervous system and gastrointestinal tract. Here, neurotensin stimulates the growth of various tissues like the gut, pancreas, adrenal gland, and liver. But abnormal expression of neurotensin can lead to or strengthen different types of cancer. A new review examines the roles of neurotensin in non-gastrointestinal cancer. In lung cancer, for example, neurotensin and its most tightly binding receptor, NTSR1, activate the formation of tumor cells. Test-tube experiments suggest a similar role for neurotensin in pancreatic and breast cancers. Tight binding between neurotensin and NTSR1 also promotes cell division in prostate tumors. And in head and neck tumor cells, adding neurotensin promotes invasion and migration. Other forms of cancer that could owe their development to neurotensin include glioma. liver cancer, malignant melanoma, and leukemia..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Inflammation in the brain is a hallmark of many neurodegenerative diseases, including Alzheimer’s and Huntington’s disease. One of the key orchestrators of neuroinflammation is IL-6, a cytokine secreted by brain-resident cells called astrocytes. While low levels of IL-6 support neurons and synapses in the brain higher levels of IL-6 are produced in response to injury or infection, triggering a series of proinflammatory signaling cascades. Unfortunately, how astrocytes regulate IL-6 expression remains unclear. A recent study evaluated signaling pathways involved in IL-6 gene regulation, including β-catenin, TCFs/LEF, C/EBP, and NF-κB. Using human astrocytes, researchers silenced or overexpressed the signaling proteins and measured IL-6 levels. They found that TCF/LEF induces IL-6 in the presence of ATF2, while β-catenin inhibits IL-6 by interacting with TCF/LEF. Interestingly, neither of these signaling pathways is known to regulate IL-6 in other cell types..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.