Updating search results...

Search Resources

7 Results

View
Selected filters:
Introduction to Power Analyses in R
Unrestricted Use
CC BY
Rating
0.0 stars

This video will introduce how to calculate statistical power in R using the pwr package.

All materials shown in the video, as well as content from our other videos, can be found here: https://osf.io/7gqsi/.

Subject:
Applied Science
Information Science
Material Type:
Module
Provider:
FOSTER Open Science
Author:
Courtney Soderberg
Date Added:
08/07/2020
Open + Reproducible Research Workshop
Unrestricted Use
CC BY
Rating
0.0 stars

Topics covered:

Understanding reproducible research
Setting up a reproducible project
Understanding power
Preregistering your study
Keeping track of things
Containing bias
Sharing your work

Subject:
Applied Science
Information Science
Material Type:
Module
Author:
April Clyburne-Sherin
Courtney Soderberg
Date Added:
08/07/2020
Reproducible Science Curriculum Lesson for Literate Programming
Read the Fine Print
Rating
0.0 stars

Workshop goals
- Why are we teaching this
- Why is this important
- For future and current you
- For research as a whole
- Lack of reproducibility in research is a real problem

Materials and how we'll use them
- Workshop landing page, with

- links to the Materials
- schedule

Structure oriented along the Four Facets of Reproducibility:

- Documentation
- Organization
- Automation
- Dissemination

Will be available after the Workshop

How this workshop is run
- This is a Carpentries Workshop
- that means friendly learning environment
- Code of Conduct
- active learning
- work with the people next to you
- ask for help

Subject:
Applied Science
Information Science
Material Type:
Module
Author:
Ciera Martinez
Courtney Soderberg
Hilmar Lapp
Jennifer Bryan
Kristina Riemer
Naupaka Zimmerman
Date Added:
08/07/2020
Reproducible Science Curriculum Lesson for Organization
Read the Fine Print
Rating
0.0 stars

Workshop goals
- Why are we teaching this
- Why is this important
- For future and current you
- For research as a whole
- Lack of reproducibility in research is a real problem

Materials and how we'll use them
- Workshop landing page, with

- links to the Materials
- schedule

Structure oriented along the Four Facets of Reproducibility:

- Documentation
- Organization
- Automation
- Dissemination

Will be available after the Workshop

How this workshop is run
- This is a Carpentries Workshop
- that means friendly learning environment
- Code of Conduct
- active learning
- work with the people next to you
- ask for help

Subject:
Applied Science
Information Science
Material Type:
Module
Author:
Ciera Martinez
Courtney Soderberg
Hilmar Lapp
Jennifer Bryan
Kristina Riemer
Naupaka Zimmerman
Date Added:
08/07/2020
Secondary Data Preregistration
Unrestricted Use
Public Domain
Rating
0.0 stars

Preregistration is the process of specifying project details, such as hypotheses, data collection procedures, and analytical decisions, prior to conducting a study. It is designed to make a clearer distinction between data-driven, exploratory work and a-priori, confirmatory work. Both modes of research are valuable, but are easy to unintentionally conflate. See the Preregistration Revolution for more background and recommendations.

For research that uses existing datasets, there is an increased risk of analysts being biased by preliminary trends in the dataset. However, that risk can be balanced by proper blinding to any summary statistics in the dataset and the use of hold out datasets (where the "training" and "validation" datasets are kept separate from each other). See this page for specific recommendations about "split samples" or "hold out" datasets. Finally, if those procedures are not followed, disclosure of possible biases can inform the researcher and her audience about the proper role any results should have (i.e. the results should be deemed mostly exploratory and ideal for additional confirmation).

This project contains a template for creating your preregistration, designed specifically for research using existing data. In the future, this template will be integrated into the OSF.

Subject:
Life Science
Social Science
Material Type:
Reading
Author:
Alexander C. DeHaven
Andrew Hall
Brian Brown
Charles R. Ebersole
Courtney K. Soderberg
David Thomas Mellor
Elliott Kruse
Jerome Olsen
Jessica Kosie
K.D. Valentine
Lorne Campbell
Marjan Bakker
Olmo van den Akker
Pamela Davis-Kean
Rodica I. Damian
Stuart J Ritchie
Thuy-vy Nguyen
William J. Chopik
Sara J. Weston
Date Added:
08/03/2021
Secondary Data Preregistration
Unrestricted Use
Public Domain
Rating
0.0 stars

Preregistration is the process of specifying project details, such as hypotheses, data collection procedures, and analytical decisions, prior to conducting a study. It is designed to make a clearer distinction between data-driven, exploratory work and a-priori, confirmatory work. Both modes of research are valuable, but are easy to unintentionally conflate. See the Preregistration Revolution for more background and recommendations.

For research that uses existing datasets, there is an increased risk of analysts being biased by preliminary trends in the dataset. However, that risk can be balanced by proper blinding to any summary statistics in the dataset and the use of hold out datasets (where the "training" and "validation" datasets are kept separate from each other). See this page for specific recommendations about "split samples" or "hold out" datasets. Finally, if those procedures are not followed, disclosure of possible biases can inform the researcher and her audience about the proper role any results should have (i.e. the results should be deemed mostly exploratory and ideal for additional confirmation).

This project contains a template for creating your preregistration, designed specifically for research using existing data. In the future, this template will be integrated into the OSF.

Subject:
Applied Science
Material Type:
Reading
Author:
Alexander C. DeHaven
Andrew Hall
Brian Brown
Charles R. Ebersole
Courtney K. Soderberg
David Thomas Mellor
Elliott Kruse
Jerome Olsen
Jessica Kosie
K. D. Valentine
Lorne Campbell
Marjan Bakker
Olmo van den Akker
Pamela Davis-Kean
Rodica I. Damian
Stuart J. Ritchie
Thuy-vy Ngugen
William J. Chopik
Sara J. Weston
Date Added:
08/12/2021
Trainer Space for the Introduction to Open and Reproducible Research Workshop
Unrestricted Use
CC BY
Rating
0.0 stars

Central location housing curriculum materials and planning tools for trainers of the COS Introduction to Open and Reproducible Research workshop.

Subject:
Applied Science
Life Science
Physical Science
Social Science
Material Type:
Activity/Lab
Provider:
Center for Open Science
Author:
Courtney K. Soderberg
Ian Sullivan
Jennifer Freeman Smith
Jolene Esposito
Matthew Spitzer
Natalie Meyers
Date Added:
04/24/2019