Updating search results...

Search Resources

7 Results

View
Selected filters:
Carpentries Instructor Training
Unrestricted Use
CC BY
Rating
0.0 stars

A two-day introduction to modern evidence-based teaching practices, built and maintained by the Carpentry community.

Subject:
Applied Science
Computer Science
Education
Higher Education
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Aleksandra Nenadic
Alexander Konovalov
Alistair John Walsh
Allison Weber
Amy E. Hodge
Andrew B. Collier
Anita Schürch
AnnaWilliford
Ariel Rokem
Brian Ballsun-Stanton
Callin Switzer
Christian Brueffer
Christina Koch
Christopher Erdmann
Colin Morris
Dan Allan
DanielBrett
Danielle Quinn
Darya Vanichkina
David Jennings
Eric Jankowski
Erin Alison Becker
Evan Peter Williamson
François Michonneau
Gerard Capes
Greg Wilson
Ian Lee
Jason M Gates
Jason Williams
Jeffrey Oliver
Joe Atzberger
John Bradley
John Pellman
Jonah Duckles
Jonathan Bradley
Karen Cranston
Karen Word
Kari L Jordan
Katherine Koziar
Katrin Leinweber
Kees den Heijer
Laurence
Lex Nederbragt
Maneesha Sane
Marie-Helene Burle
Mik Black
Mike Henry
Murray Cadzow
Neal Davis
Neil Kindlon
Nicholas Tierney
Nicolás Palopoli
Noah Spies
Paula Andrea Martinez
Petraea
Rayna Michelle Harris
Rémi Emonet
Rémi Rampin
Sarah Brown
Sarah M Brown
Sarah Stevens
Sean
Serah Anne Njambi Kiburu
Stefan Helfrich
Steve Moss
Stéphane Guillou
Ted Laderas
Tiago M. D. Pereira
Toby Hodges
Tracy Teal
Yo Yehudi
amoskane
davidbenncsiro
naught101
satya-vinay
Date Added:
08/07/2020
Data Analysis and Visualization in R for Ecologists
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry lesson from Ecology curriculum to learn how to analyse and visualise ecological data in R. Data Carpentry’s aim is to teach researchers basic concepts, skills, and tools for working with data so that they can get more done in less time, and with less pain. The lessons below were designed for those interested in working with ecology data in R. This is an introduction to R designed for participants with no programming experience. These lessons can be taught in a day (~ 6 hours). They start with some basic information about R syntax, the RStudio interface, and move through how to import CSV files, the structure of data frames, how to deal with factors, how to add/remove rows and columns, how to calculate summary statistics from a data frame, and a brief introduction to plotting. The last lesson demonstrates how to work with databases directly from R.

Subject:
Applied Science
Computer Science
Ecology
Information Science
Life Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Ankenbrand, Markus
Arindam Basu
Ashander, Jaime
Bahlai, Christie
Bailey, Alistair
Becker, Erin Alison
Bledsoe, Ellen
Boehm, Fred
Bolker, Ben
Bouquin, Daina
Burge, Olivia Rata
Burle, Marie-Helene
Carchedi, Nick
Chatzidimitriou, Kyriakos
Chiapello, Marco
Conrado, Ana Costa
Cortijo, Sandra
Cranston, Karen
Cuesta, Sergio Martínez
Culshaw-Maurer, Michael
Czapanskiy, Max
Daijiang Li
Dashnow, Harriet
Daskalova, Gergana
Deer, Lachlan
Direk, Kenan
Dunic, Jillian
Elahi, Robin
Fishman, Dmytro
Fouilloux, Anne
Fournier, Auriel
Gan, Emilia
Goswami, Shubhang
Guillou, Stéphane
Hancock, Stacey
Hardenberg, Achaz Von
Harrison, Paul
Hart, Ted
Herr, Joshua R.
Hertweck, Kate
Hodges, Toby
Hulshof, Catherine
Humburg, Peter
Jean, Martin
Johnson, Carolina
Johnson, Kayla
Johnston, Myfanwy
Jordan, Kari L
K. A. S. Mislan
Kaupp, Jake
Keane, Jonathan
Kerchner, Dan
Klinges, David
Koontz, Michael
Leinweber, Katrin
Lepore, Mauro Luciano
Li, Ye
Lijnzaad, Philip
Lotterhos, Katie
Mannheimer, Sara
Marwick, Ben
Michonneau, François
Millar, Justin
Moreno, Melissa
Najko Jahn
Obeng, Adam
Odom, Gabriel J.
Pauloo, Richard
Pawlik, Aleksandra Natalia
Pearse, Will
Peck, Kayla
Pederson, Steve
Peek, Ryan
Pletzer, Alex
Quinn, Danielle
Rajeg, Gede Primahadi Wijaya
Reiter, Taylor
Rodriguez-Sanchez, Francisco
Sandmann, Thomas
Seok, Brian
Sfn_brt
Shiklomanov, Alexey
Shivshankar Umashankar
Stachelek, Joseph
Strauss, Eli
Sumedh
Switzer, Callin
Tarkowski, Leszek
Tavares, Hugo
Teal, Tracy
Theobold, Allison
Tirok, Katrin
Tylén, Kristian
Vanichkina, Darya
Voter, Carolyn
Webster, Tara
Weisner, Michael
White, Ethan P
Wilson, Earle
Woo, Kara
Wright, April
Yanco, Scott
Ye, Hao
Date Added:
03/20/2017
Data Wrangling and Processing for Genomics
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry lesson to learn how to use command-line tools to perform quality control, align reads to a reference genome, and identify and visualize between-sample variation. A lot of genomics analysis is done using command-line tools for three reasons: 1) you will often be working with a large number of files, and working through the command-line rather than through a graphical user interface (GUI) allows you to automate repetitive tasks, 2) you will often need more compute power than is available on your personal computer, and connecting to and interacting with remote computers requires a command-line interface, and 3) you will often need to customize your analyses, and command-line tools often enable more customization than the corresponding GUI tools (if in fact a GUI tool even exists). In a previous lesson, you learned how to use the bash shell to interact with your computer through a command line interface. In this lesson, you will be applying this new knowledge to carry out a common genomics workflow - identifying variants among sequencing samples taken from multiple individuals within a population. We will be starting with a set of sequenced reads (.fastq files), performing some quality control steps, aligning those reads to a reference genome, and ending by identifying and visualizing variations among these samples. As you progress through this lesson, keep in mind that, even if you aren’t going to be doing this same workflow in your research, you will be learning some very important lessons about using command-line bioinformatic tools. What you learn here will enable you to use a variety of bioinformatic tools with confidence and greatly enhance your research efficiency and productivity.

Subject:
Applied Science
Computer Science
Genetics
Information Science
Life Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Adam Thomas
Ahmed R. Hasan
Aniello Infante
Anita Schürch
Dev Paudel
Erin Alison Becker
Fotis Psomopoulos
François Michonneau
Gaius Augustus
Gregg TeHennepe
Jason Williams
Jessica Elizabeth Mizzi
Karen Cranston
Kari L Jordan
Kate Crosby
Kevin Weitemier
Lex Nederbragt
Luis Avila
Peter R. Hoyt
Rayna Michelle Harris
Ryan Peek
Sheldon John McKay
Sheldon McKay
Taylor Reiter
Tessa Pierce
Toby Hodges
Tracy Teal
Vasilis Lenis
Winni Kretzschmar
dbmarchant
Date Added:
08/07/2020
Good enough practices in scientific computing
Unrestricted Use
CC BY
Rating
0.0 stars

Computers are now essential in all branches of science, but most researchers are never taught the equivalent of basic lab skills for research computing. As a result, data can get lost, analyses can take much longer than necessary, and researchers are limited in how effectively they can work with software and data. Computing workflows need to follow the same practices as lab projects and notebooks, with organized data, documented steps, and the project structured for reproducibility, but researchers new to computing often don't know where to start. This paper presents a set of good computing practices that every researcher can adopt, regardless of their current level of computational skill. These practices, which encompass data management, programming, collaborating with colleagues, organizing projects, tracking work, and writing manuscripts, are drawn from a wide variety of published sources from our daily lives and from our work with volunteer organizations that have delivered workshops to over 11,000 people since 2010.

Subject:
Biology
Life Science
Material Type:
Reading
Provider:
PLOS Computational Biology
Author:
Greg Wilson
Jennifer Bryan
Justin Kitzes
Karen Cranston
Lex Nederbragt
Tracy K. Teal
Date Added:
08/07/2020
Introduction to the Command Line for Genomics
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry lesson to learn to navigate your file system, create, copy, move, and remove files and directories, and automate repetitive tasks using scripts and wildcards with genomics data. Command line interface (OS shell) and graphic user interface (GUI) are different ways of interacting with a computer’s operating system. The shell is a program that presents a command line interface which allows you to control your computer using commands entered with a keyboard instead of controlling graphical user interfaces (GUIs) with a mouse/keyboard combination. There are quite a few reasons to start learning about the shell: For most bioinformatics tools, you have to use the shell. There is no graphical interface. If you want to work in metagenomics or genomics you’re going to need to use the shell. The shell gives you power. The command line gives you the power to do your work more efficiently and more quickly. When you need to do things tens to hundreds of times, knowing how to use the shell is transformative. To use remote computers or cloud computing, you need to use the shell.

Subject:
Applied Science
Computer Science
Genetics
Information Science
Life Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Amanda Charbonneau
Amy E. Hodge
Anita Schürch
Bastian Greshake Tzovaras
Bérénice Batut
Colin Davenport
Diya Das
Erin Alison Becker
François Michonneau
Giulio Valentino Dalla Riva
Jessica Elizabeth Mizzi
Karen Cranston
Kari L Jordan
Mattias de Hollander
Mike Lee
Niclas Jareborg
Omar Julio Sosa
Rayna Michelle Harris
Ross Cunning
Russell Neches
Sarah Stevens
Shannon EK Joslin
Sheldon John McKay
Siva Chudalayandi
Taylor Reiter
Tobi
Tracy Teal
Tristan De Buysscher
Date Added:
08/07/2020
Reproducible Science Curriculum Lesson for Publication
Read the Fine Print
Rating
0.0 stars

Workshop goals
- Why are we teaching this
- Why is this important
- For future and current you
- For research as a whole
- Lack of reproducibility in research is a real problem

Materials and how we'll use them
- Workshop landing page, with

- links to the Materials
- schedule

Structure oriented along the Four Facets of Reproducibility:

- Documentation
- Organization
- Automation
- Dissemination

Will be available after the Workshop

How this workshop is run
- This is a Carpentries Workshop
- that means friendly learning environment
- Code of Conduct
- active learning
- work with the people next to you
- ask for help

Subject:
Applied Science
Information Science
Material Type:
Module
Author:
Dave Clements
Hilmar Lapp
Karen Cranston
Date Added:
08/07/2020
Reproducible Science Curriculum Lesson for Version Control
Read the Fine Print
Rating
0.0 stars

Workshop goals
- Why are we teaching this
- Why is this important
- For future and current you
- For research as a whole
- Lack of reproducibility in research is a real problem

Materials and how we'll use them
- Workshop landing page, with

- links to the Materials
- schedule

Structure oriented along the Four Facets of Reproducibility:

- Documentation
- Organization
- Automation
- Dissemination

Will be available after the Workshop

How this workshop is run
- This is a Carpentries Workshop
- that means friendly learning environment
- Code of Conduct
- active learning
- work with the people next to you
- ask for help

Subject:
Applied Science
Information Science
Material Type:
Module
Author:
Ciera Martinez
Hilmar Lapp
Karen Cranston
Date Added:
08/07/2020