Superphylum Ecdysozoa

Phylum Nematoda

The Nematoda, like most other animal phyla, are triploblastic and possess an embryonic mesoderm that is sandwiched between the ectoderm and endoderm. They are also bilaterally symmetrical, meaning that a longitudinal section will divide them into right and left sides that are symmetrical. Furthermore, the nematodes, or roundworms, possess a pseudocoelom and consist of both free-living and parasitic forms.

It has been said that were all the non-nematode matter of the biosphere removed, there would remain a shadow of the former world in the form of nematodes.Stoll, N. R., “This wormy world. 1947,” Journal of Parasitology 85(3) (1999): 392-396. The arthropods, one of the most successful taxonomic groups on the planet, are coelomate organisms characterized by a hard exoskeleton and jointed appendages. Both the nematodes and arthropods belong to the superphylum Ecdysozoa that is believed to be a clade consisting of all evolutionary descendants from one common ancestor. The name derives from the word ecdysis, which refers to the shedding, or molting, of the exoskeleton. The phyla in this group have a hard cuticle that covers their bodies, which must be periodically shed and replaced for them to increase in size.

Phylum Nematoda includes more than 28,000 species with an estimated 16,000 being parasitic in nature. The name Nematoda is derived from the Greek word “Nemos,” which means “thread” and includes roundworms. Nematodes are present in all habitats with a large number of individuals of each species present in each. The free-living nematode, Caenorhabditis elegans has been extensively used as a model system in laboratories all over the world.

Morphology

In contrast with cnidarians, nematodes show a tubular morphology and circular cross-section. These animals are pseudocoelomates and show the presence of a complete digestive system with a distinct mouth and anus. This is in contrast with the cnidarians, where only one opening is present (an incomplete digestive system).

The cuticle of Nematodes is rich in collagen and a carbohydrate-protein polymer called chitin, and forms an external “skeleton” outside the epidermis. The cuticle also lines many of the organs internally, including the pharynx and rectum. The epidermis can be either a single layer of cells or a syncytium, which is a multinucleated cell formed from the fusion of uninucleated cells.

The overall morphology of these worms is cylindrical, as seen in Figure. The head is radially symmetrical. A mouth opening is present at the anterior end with three or six lips as well as teeth in some species in the form of cuticle extensions. Some nematodes may present other external modifications like rings, head shields, or warts. Rings, however, do not reflect true internal body segmentation. The mouth leads to a muscular pharynx and intestine, which leads to a rectum and anal opening at the posterior end. The muscles of nematodes differ from those of most animals: They have a longitudinal layer only, which accounts for the whip-like motion of their movement.

Photo a shows a worm-shaped nematode next to a capsule-shaped nematode egg. The illustration in part b shows a cross-section of a nematode, which has a mouth at one end and an anus at the other. The mouth connects to a pharynx, then to an intestine. A dorsal nerve runs along the top of the animal and joins ring-like head ganglia at the front end. Testes run alongside the intestine toward the back of the animal.
Scanning electron micrograph shows (a) the soybean cyst nematode (Heterodera glycines) and a nematode egg. (b) A schematic representation shows the anatomy of a typical nematode. (credit a: modification of work by USDA ARS; scale-bar data from Matt Russell)

Excretory System

In nematodes, specialized excretory systems are not well developed. Nitrogenous wastes may be lost by diffusion through the entire body or into the pseudocoelom (body cavity), where they are removed by specialized cells. Regulation of water and salt content of the body is achieved by renette glands, present under the pharynx in marine nematodes.

Nervous system

Most nematodes possess four longitudinal nerve cords that run along the length of the body in dorsal, ventral, and lateral positions. The ventral nerve cord is better developed than the dorsal or lateral cords. All nerve cords fuse at the anterior end, around the pharynx, to form head ganglia or the “brain” of the worm (which take the form of a ring around the pharynx) as well as at the posterior end to form the tail ganglia. In C. elegans, the nervous system accounts for nearly one-third of the total number of cells in the animal.

Reproduction

Nematodes employ a variety of reproductive strategies that range from monoecious to dioecious to parthenogenic, depending upon the species under consideration. C. elegans is a monoecious species and shows development of ova contained in a uterus as well as sperm contained in the spermatheca. The uterus has an external opening known as the vulva. The female genital pore is near the middle of the body, whereas the male’s is at the tip. Specialized structures at the tail of the male keep him in place while he deposits sperm with copulatory spicules. Fertilization is internal, and embryonic development starts very soon after fertilization. The embryo is released from the vulva during the gastrulation stage. The embryonic development stage lasts for 14 hours; development then continues through four successive larval stages with ecdysis between each stage—L1, L2, L3, and L4—ultimately leading to the development of a young male or female adult worm. Adverse environmental conditions like overcrowding and lack of food can result in the formation of an intermediate larval stage known as the dauer larva.

Everyday Connection

C. elegans: The Model System for Linking Developmental Studies with Genetics If biologists wanted to research how nicotine dependence develops in the body, how lipids are regulated, or observe the attractant or repellant properties of certain odors, they would clearly need to design three very different experiments. However, they might only need one object of study: C. elegans. The nematode Caenorhabditis elegans was brought into the focus of mainstream biological research by Dr. Sydney Brenner. Since 1963, Dr. Brenner and scientists worldwide have used this animal as a model system to study various physiological and developmental mechanisms.

C. elegans is a free-living organism found in soil. It is easy to culture this organism on agar plates (10,000 worms/plate), it feeds on Escherichia coli (another long-term resident of biological laboratories worldwide), and therefore, it can be readily grown and maintained in a laboratory. The biggest asset of this nematode is its transparency, which helps researchers to observe and monitor changes within the animal with ease. It is also a simple organism with fewer than 1,000 cells and a genome of 20,000 genes. It shows chromosomal organization of DNA into five pairs of autosomes plus a pair of sex chromosomes, making it an ideal candidate to study genetics. Since every cell can be visualized and identified, this organism is useful for studying cellular phenomena like cell-cell interactions, cell-fate determinations, cell division, apoptosis, and intracellular transport.

Another tremendous asset is the short life cycle of this worm (Figure). It takes only 3 days to achieve the “egg to adult to daughter egg;” therefore, tracking genetic changes is easier in this animal. The total life span of C. elegans is 2 to 3 weeks; hence, age-related phenomena are easy to observe. Another feature that makes C. elegans an excellent experimental model system is that the position and number of the 959 cells present in adult hermaphrodites of this organism is constant. This feature is extremely significant when studying cell differentiation, cell-cell communication, and apoptosis. Lastly, C. elegans is also amenable to genetic manipulations using molecular methods, rounding off its usefulness as a model system.

Biologists worldwide have created information banks and groups dedicated to research using C. elegans. Their findings have led, for example, to better understandings of cell communication during development, neuronal signaling and insight into lipid regulation (which is important in addressing health issues like the development of obesity and diabetes). In recent years, studies have enlightened the medical community with a better understanding of polycystic kidney disease. This simple organism has led biologists to complex and significant findings, growing the field of science in ways that touch the everyday world.

Photo a shows transparent worm about a millimeter in length. Illustration B shows the life cycle of C. elegans, which begins when the egg hatches, releasing a L1 juvenile. After 12 hours the L1 juvenile transforms into an L2 juvenile. After 7 hours the L2 juvenile transforms into an L3 juvenile. After another 7 hours the L3 juvenile transforms into an L4 juvenile. After 14 hours the L4 juvenile transforms into an adult. The hermaphroditic adult mates with another adult to produce fertilized eggs which hatch, completing the cycle.
(a) This light micrograph shows Caenorhabditis elegans. Its transparent adult stage consists of exactly 959 cells. (b) The life cycle of C. elegans has four juvenile stages (L1 through L4) and an adult stage. Under ideal conditions, the nematode spends a set amount of time at each juvenile stage, but under stressful conditions, it may enter a dauer state that does not age. The worm is hermaphroditic in the adult state, and mating of two worms produces a fertilized egg. (credit a: modification of work by “snickclunk”/Flickr: credit b: modification of work by NIDDK, NIH; scale-bar data from Matt Russell)

A number of common parasitic nematodes serve as prime examples of parasitism. These animals exhibit complex lifecycles that involve multiple hosts, and they can have significant medical and veterinary impacts. Humans may become infected by Dracunculus medinensis, known as guinea worms, when they drink unfiltered water containing copepods (Figure). Hookworms, such as Ancyclostoma and Necator, infest the intestines and feed on the blood of mammals, especially in dogs, cats, and humans. Trichina worms (Trichinella) are the causal organism of trichinosis in humans, often resulting from the consumption of undercooked pork; Trichinella can infect other mammalian hosts as well. Ascaris, a large intestinal roundworm, steals nutrition from its human host and may create physical blockage of the intestines. The filarial worms, such as Dirofilaria and Wuchereria, are commonly vectored by mosquitoes, which pass the infective agents among mammals through their blood-sucking activity. Dirofilaria immitis, a blood-infective parasite, is the notorious dog heartworm species. Wuchereria bancrofti infects the lymph nodes of humans, resulting in the non-lethal but deforming condition called elephantiasis, in which parts of the body become swelled to gigantic proportions due to obstruction of lymphatic drainage and inflammation of lymphatic tissues.

 Part A shows a foot with a guinea worm extending from a blister. The end of the worm is wrapped around a stick. Part B shows the life cycle of the guinea worm, which begins when a person drinks unfiltered water containing copepods infected with guinea worm larvae. Larvae, which are released when the copepods die, penetrate the wall of the stomach and intestine. The worms mature and reproduce. Fertilized females migrate to the surface of the skin, where they discharge larvae into the water. Copepods consume the larvae. The copepods are consumed by humans, completing the cycle. About a year after infection, the female worm emerges from the skin.
The guinea worm Dracunculus medinensis infects about 3.5 million people annually, mostly in Africa. (a) Here, the worm is wrapped around a stick so it can be extracted. (b) Infection occurs when people consume water contaminated by infected copepods, but this can easily be prevented by simple filtration systems. (credit: modification of work by CDC)
2 of 7