High-quality elementary science resources for distance learning from AstroEdu, MIT Blossoms, NGSS@NSTA, Phet Interactives, and TeachEngineering. You can refine the collections by selecting different fields, such as material types, on the left side of the page, under Filter Resources.
Students work in engineering teams to optimize cleaner energy solutions for cooking …
Students work in engineering teams to optimize cleaner energy solutions for cooking and heating in rural China. They choose between various options for heating, cooking, hot water, and lights and other electricity, balancing between the cost and health effects of different energy choices.
This lesson covers the topic of human bones and joints. Students learn …
This lesson covers the topic of human bones and joints. Students learn about the skeleton, the number of and types of bones in the body, and how outer space affects astronauts' bones. Students also learn how to take care of their bones here on Earth to prevent osteoporosis or weakening of the bones.
Students are introduced to the fabulous planet on which they live. Even …
Students are introduced to the fabulous planet on which they live. Even though we spend our entire lives on Earth, we still do not always understand how it fits into the rest of the solar system. Students learn about the Earth's position in the solar system and what makes it unique. They learn how engineers study human interactions with the Earth and design technologies and systems to monitor, use and care for our planet's resources wisely to preserve life on Earth.
Students learn about the human body's system components, specifically its sensory systems, …
Students learn about the human body's system components, specifically its sensory systems, nervous system and brain, while comparing them to robot system components, such as sensors and computers. The unit's life sciences-to-engineering comparison is accomplished through three lessons and five activities. The important framework of "stimulus-sensor-coordinator-effector-response" is introduced to show how it improves our understanding the cause-effect relationships of both systems. This framework reinforces the theme of the human body as a system from the perspective of an engineer. This unit is the second of a series, intended to follow the Humans Are Like Robots unit.
Students explore the outermost planets of our solar system: Saturn, Uranus and …
Students explore the outermost planets of our solar system: Saturn, Uranus and Neptune. They also learn about characteristics of Pluto and its interactions with Neptune. Students learn a little about the history of space travel as well as the different technologies that engineers develop to make space travel and scientific discovery possible.
Using paper, paper clips and tape, student teams design flying/falling devices to …
Using paper, paper clips and tape, student teams design flying/falling devices to stay in the air as long as possible and land as close as possible to a given target. Student teams use the steps of the engineering design process to guide them through the initial conception, evaluation, testing and re-design stages. The activity culminates with a classroom competition and scoring to evaluate how each team's design performed.
Students act as civil engineers developing safe railways as a way to …
Students act as civil engineers developing safe railways as a way to strengthen their understanding of parallel and intersecting lines. Using pieces of yarn to visually represent line segments, students lay down "train tracks" on a carpeted floor, and make guesses as to whether these segments are arranged in parallel or non-parallel fashion. Students then test their tracks by running two LEGO® MINDSTORMS® NXT robots to observe the consequences of their track designs, and make safety improvements. Robots on intersecting courses face imminent collision, while robots on parallel courses travel safely.
The difference between an architect and an engineer is sometimes confusing because …
The difference between an architect and an engineer is sometimes confusing because their roles in building design can be similar. Students experience a bit of both professions by following a set of requirements and meeting given constraints as they create a model parking garage. They experience the engineering design process first-hand as they design, build and test their models. They draw a blueprint for their design, select the construction materials and budget their expenditures. They also test their structures for strength and find their maximum loads.
Students engage in an interactive "hot potato" demonstration to gain an appreciation …
Students engage in an interactive "hot potato" demonstration to gain an appreciation for the flow of electrons through a circuit. Students role play the different parts of a simple circuit and send small items representing electrons (paper or candy pieces) through the circuit.
Students apply several methods developed to identify and interpret patterns to the …
Students apply several methods developed to identify and interpret patterns to the identification of fingerprints. They look at their classmates' fingerprints, snowflakes, and "spectral fingerprints" of elements. They learn to identify each image as unique, yet part of a group containing recognizable similarities.
In this activity, students will learn how water can be polluted by …
In this activity, students will learn how water can be polluted by algal blooms. They will grow algae with different concentrations of fertilizer or nutrients and analyze their results as environmental engineers working to protect a local water resource.
Play with one or two pendulums and discover how the period of …
Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the mass of the pendulum bob, and the amplitude of the swing. It's easy to measure the period using the photogate timer. You can vary friction and the strength of gravity. Use the pendulum to find the value of g on planet X. Notice the anharmonic behavior at large amplitude.
Students investigate how different riparian ground covers, such as grass or pavement, …
Students investigate how different riparian ground covers, such as grass or pavement, affect river flooding. They learn about permeable and impermeable materials through the measurement how much water is absorbed by several different household materials in a model river. Students use what they learn to make recommendations for engineers developing permeable pavement. Also, they consider several different limitations for design in the context of a small community.
In this activity, students will learn about Newton's 2nd Law of Motion. …
In this activity, students will learn about Newton's 2nd Law of Motion. They will learn that the force required to move a book is proportional to the weight of the book. Engineers use this relationship to determine how much force they need to move an airplane.
In this lesson, students learn that light travels in a straight line …
In this lesson, students learn that light travels in a straight line from a light source and that ray diagrams help us understand how an image will be created by a lens. In the accompanying activity, students explore the concepts behind the workings of a pinhole camera.
Students use the free computer game Pingus to learn how engineers, specifically …
Students use the free computer game Pingus to learn how engineers, specifically environmental engineers, use their technical writing skills to give instructions and follow the instructions of others. Students learn to write instructions to express their ideas in clear, organized ways using descriptive, un-ambiguous sentences, as an example of one type of technical writing that important for engineers. The students write instructions enumerating how to beat a game level, which represents surveying that level for environmental problems. As a test of their instructions, students review each others' instructions and offer suggestions for improvement, and then revise their instructions to make them better. Students also see some examples of environmental problems.
To further their understanding of sound energy, students identify the different pitches …
To further their understanding of sound energy, students identify the different pitches and frequencies created by a vibrating ruler and a straw kazoo. They create high- and low-pitch sound waves.
What do plants need? Students examine the effects of light and air …
What do plants need? Students examine the effects of light and air on green plants, learning the processes of photosynthesis and transpiration. Student teams plant seeds, placing some in sunlight and others in darkness. They make predictions about the outcomes and record ongoing observations of the condition of the stems, leaves and roots. Then, several healthy plants are placed in glass jars with lids overnight. Condensation forms, illustrating the process of transpiration, or the release of moisture to the atmosphere by plants.
After a brief history of plastics, students look more closely as some …
After a brief history of plastics, students look more closely as some examples from the abundant types of plastics found in our day-to-day lives. They are introduced to the mechanical properties of plastics, including their stress-strain relationships, which determine their suitability for different industrial and product applications. These physical properties enable plastics to be fabricated into a wide range of products. Students learn about the different roles that plastics play in our lives, Young's modulus, and the effects that plastics have on our environment. Then students act as industrial engineers, conducting tests to compare different plastics and performing a cost-benefit analysis to determine which are the most cost-effective for a given application, based on their costs and measured physical properties.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.