All resources in Science

The 3-D Universe

(View Complete Item Description)

A 2-D map is a great guide here on Earth—and virtually worthless for finding your way around in outer space. Take a 3-D look at mapping our solar system and universe. This Moveable Museum article, available as a printable PDF file, looks at how astronomers use data to create 3-D models of the universe. Explore these concepts further using the recommended resources mentioned in this reading selection.

Material Type: Data Set

Shake Alert!: Making every second count.

(View Complete Item Description)

The high school earth and physical science unit moves through an exploration of tectonic plates, why and how they move, and the earthquakes that they cause. As the final project, teams learn about Early Warning Systems for earthquakes and how they have saved millions of lives in other countries. Teams take on a population in Oregon and design a ShakeAlert system to give them the seconds required to prepare for a mega earthquake.

Material Type: Activity/Lab, Case Study, Lesson Plan, Reading, Unit of Study

Authors: Holly Lynn, Joe Emery, Lisa Livelybrooks

Global Vegetation Types

(View Complete Item Description)

This module focuses on the description of different vetation types that may be of use as part of an introductory physical geography course (biogeography), or for a class focused on the study of plants and vegetation. All images were collected from travels to learn about vegetation over the past 40 years and I openly make them available through the OER site. The resources attached to the module include:I. Description of terms used to describe and distinguish among global vegetation types (biomes)- descriptive notes and imagesII. Tropical Vegetation Types- descriptive notes and powerpoint slide showIIIl Subtropical_Temperate_Arctic Vegetation Types- descriptive notes; powerpoint slide show; supportive lists for desert and montane species. 

Material Type: Module

Author: Kimberly Medley

Build and Test a Model Solar House

(View Complete Item Description)

Construct and measure the energy efficiency and solar heat gain of a cardboard model house. Use a light bulb heater to imitate a real furnace and a temperature sensor to monitor and regulate the internal temperature of the house. Use a bright bulb in a gooseneck lamp to model sunlight at different times of the year, and test the effectiveness of windows for passive solar heating.

Material Type: Activity/Lab, Assessment, Diagram/Illustration, Lecture Notes, Student Guide

Author: The Concord Consortium

Environmental Applications of GIS

(View Complete Item Description)

Increasingly volatile climate and weather; vulnerable drinking water supplies; shrinking wildlife habitats; widespread deforestation due to energy and food production. These are examples of environmental challenges that are of critical importance in our world, both in far away places and close to home, and are particularly well suited to inquiry using geographic information systems. In GEOG 487 you will explore topics like these and learn about data and spatial analysis techniques commonly employed in environmental applications. After taking this course you will be equipped with relevant analytical approaches and tools that you can readily apply to your own environmental contexts.

Material Type: Full Course

Author: Rachel Kornak

Geology of the National Parks

(View Complete Item Description)

Geysers and grizzlies and glaciers, oh my. The national parks may be America's best idea, saving the finest parts of the nation for everyone to enjoy forever. What better way to learn about the natural world than to tour the parks with us? We'll explore how the mountains and valleys formed and why they often come with volcanoes and earthquakes. You'll see what really killed the dinosaurs and how we can help save their modern relatives in the parks. With film clips, slide shows, and our geological interpretations of classic rock songs, isn't it time for a road trip?

Material Type: Full Course

Authors: Richard Alley, Sridhar Anandakrishnan

Mining Made Simple

(View Complete Item Description)

Students simulate operating an iron mine, from choosing property to writing an environmental impact statement to setting up the mining operation. Chocolate chip cookies (with the chocolate chips representing iron ore) are used for this experiment. Students are challenged to operate the most profitable and environmentally sound mine they can.

Material Type: Activity/Lab, Interactive

Author: Eric Cohen

Population Growth Curves

(View Complete Item Description)

Using Avida-ED freeware, students control a few factors in an environment populated with digital organisms, and then compare how changing these factors affects population growth. They experiment by altering the environment size (similar to what is called carrying capacity, the maximum population size that an environment can normally sustain), the initial organism gestation rate, and the availability of resources. How systems function often depends on many different factors. By altering these factors one at a time, and observing the results, students are able to clearly see the effect of each one.

Material Type: Activity/Lab

Authors: Jeff Farell, Jennifer Doherty, Wendy Johnson

Create a Safe Bungee Cord for Washy!

(View Complete Item Description)

Students learn about the role engineers and mathematicians play in developing the perfect bungee cord length by simulating and experimenting with bungee jumping using washers and rubber bands. Working as if they are engineers for a (hypothetical) amusement park, students are challenged to develop a show-stopping bungee jumping ride that is safe. To do this, they must find the maximum length of the bungee cord that permits jumpers (such as brave Washy!) to get as close to the ground as possible without going "splat"! This requires them to learn about force and displacement and run an experiment. Student teams collect and plot displacement data and calculate the slope, linear equation of the line of best fit and spring constant using Hooke's law. Students make hypotheses, interpret scatter plots looking for correlations, and consider possible sources of error. An activity worksheet, pre/post quizzes and a PowerPoint® presentation are included.

Material Type: Activity/Lab

Author: Marc Frank

Soap vs. Shampoo Surfactant Lab

(View Complete Item Description)

Students learn about the properties of solutions—such as ion interactions, surface tension and viscosity—as they make their own soap and shampoo and then compare their properties. Working as if they are chemical engineers, they explore and compare how the two surfactants behave in tap water, as well as classroom-prepared acidic water, hard water and seawater using four tests: a “shake test” (assessing the amount of bubbles produced), a surface tension test, a viscosity test, and a pH test. Then they coalesce their findings into a recommendation for how to engineer the best soap versus shampoo. The activity may be shortened by using purchased liquid soap and shampoo from which students proceed to conduct the four tests. A lab worksheet and post-quiz are provided.

Material Type: Activity/Lab

Author: Dahlia Amato

MISA HS Sample Item Set - Wind Turbines (PS/ESS)

(View Complete Item Description)

Sample high school MISA test item set which uses a physics and earth space science performance expectations.  The Item set focuses on wind turbines and their environmental impacts. It contains 5 questions and one constructed response for a total of 9 points. (Image source: “Wind Turbine” by Painter06 at  

Material Type: Lesson Plan

Authors: Melissa Kaye-Kamauff, Jeremy Haack, MSDE Admin, Laura Garfinkel

Linear Equations Game

(View Complete Item Description)

Students groups act as aerospace engineering teams competing to create linear equations to guide space shuttles safely through obstacles generated by a modeling game in level-based rounds. Each round provides a different configuration of the obstacle, which consists of two "gates." The obstacles are presented as asteroids or comets, and the linear equations as inputs into autopilot on board the shuttle. The winning group is the one that first generates the successful equations for all levels. The game is created via the programming software MATLAB, available as a free 30-day trial. The activity helps students make the connection between graphs and the real world. In this activity, they can see the path of a space shuttle modeled by a linear equation, as if they were looking from above.

Material Type: Activity/Lab

Author: Stanislav Roslyakov

A Chance at Monte Carlo

(View Complete Item Description)

At its core, the LEGO MINDSTORMS(TM) NXT product provides a programmable microprocessor. Students use the NXT processor to simulate an experiment involving thousands of uniformly random points placed within a unit square. Using the underlying geometry of the experimental model, as well as the geometric definition of the constant π (pi), students form an empirical ratio of areas to estimate a numerical value of π. Although typically used for numerical integration of irregular shapes, in this activity, students use a Monte Carlo simulation to estimate a common but rather complex analytical form the numerical value of the most famous irrational number, π.

Material Type: Activity/Lab

Authors: Carleigh Samson, Janet Yowell, Michael Trumpis

9th Grade Cube Challenge

(View Complete Item Description)

Students will use a perceived weak material to construct something that is surprisingly strong. Students can experiment with different shapes and configurations to see what holds the most weight. The cube size is defined, what each student places within each 4x4 square, is up to them.

Material Type: Activity/Lab, Lesson

Author: John Brander