Updating search results...

Search Resources

35 Results

View
Selected filters:
  • electron
Atomic Theory I: The Early Days
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces J. J. Thomson's discovery of the electron and E. Rutherford's planetary model of atomic structure. This is the first in a series covering modern atomic theory.

Subject:
Astronomy
Chemistry
Education
Physical Science
Physics
Space Science
Material Type:
Interactive
Unit of Study
Provider:
UCAR Staff
Provider Set:
Visionlearning
Author:
Anthony Carpi
Date Added:
03/17/2003
Atoms: The Space Between
Read the Fine Print
Educational Use
Rating
0.0 stars

This video segment adapted from A Science Odyssey takes a look at the scale of the atom and the tremendous amount of space between the electrons and the nucleus. If all this empty space exists in matter, how can any substance be solid?

Subject:
Chemistry
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
01/22/2004
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
08/22/2012
Biology, The Chemistry of Life, The Chemical Foundation of Life, Atoms, Isotopes, Ions, and Molecules: The Building Blocks
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

By the end of this section, you will be able to:Define matter and elementsDescribe the interrelationship between protons, neutrons, and electronsCompare the ways in which electrons can be donated or shared between atomsExplain the ways in which naturally occurring elements combine to create molecules, cells, tissues, organ systems, and organisms

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Author:
Tina B. Jones
Date Added:
08/26/2019
Biology, The Chemistry of Life, The Chemical Foundation of Life, Atoms, Isotopes, Ions, and Molecules: The Building Blocks
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

By the end of this section, you will be able to:Define matter and elementsDescribe the interrelationship between protons, neutrons, and electronsCompare the ways in which electrons can be donated or shared between atomsExplain the ways in which naturally occurring elements combine to create molecules, cells, tissues, organ systems, and organisms

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Date Added:
07/10/2017
Blue Coral Periodic Table
Only Sharing Permitted
CC BY-ND
Rating
0.0 stars

Blue Coral Periodic Table is your quick guide to all 118 elements. Swipe and tap your way across the table for quick stats on each element. Dive deeper and recolor the table with patterns based off properties such as boiling point, melting point, and atomic radius.

View the atomic model for each element and see how the electron configuration changes as you move from element to element.

Blue Coral Periodic Table is fully responsive in the web browser for large and small devices in both horizontal and vertical orientations.

Subject:
Chemistry
Physical Science
Material Type:
Diagram/Illustration
Interactive
Provider:
Blue Coral Learning
Date Added:
12/06/2017
Both Fields at Once?!
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson discusses the result of a charge being subject to both electric and magnetic fields at the same time. It covers the Hall effect, velocity selector, and the charge to mass ratio. Given several sample problems, students learn to calculate the Hall Voltage dependent upon the width of the plate, the drift velocity, and the strength of the magnetic field. Then students learn to calculate the velocity selector, represented by the ratio of the magnitude of the fields assuming the strength of each field is known. Finally, students proceed through a series of calculations to arrive at the charge to mass ratio. A homework set is included as an evaluation of student progress.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
The Building Blocks of Matter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about atoms and their structure (protons, electrons, neutrons) — the building blocks of matter. They see how scientific discoveries about atoms and molecules influence new technologies developed by engineers.

Subject:
Chemistry
Physical Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Daria Kotys-Schwartz
Janet Yowell
Malinda Schaefer Zarske
Date Added:
02/17/2017
Carbonyl-based π-conjugated materials: The future of lithium-ion batteries
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"For decades they’ve taken a backseat to their mineral counterparts. But today, organic materials are booming—not least of all for their applications in lithium-ion batteries. A new review article published in the journal ChemPlusChem discusses how one class of organics in particular is poised to yield high performance from a tiny but versatile package: carbonyl-based π-conjugated compounds. Like other organic materials, carbonyl-based π-conjugated materials present a unique and much-needed solution to the global energy crisis. Flexible, light, and naturally abundant, these compounds offer the prospect of nimble energy-storage systems with energy and power densities comparable to inorganic systems. What sets carbonyl-based π-conjugated materials apart from other organics is highly tunable electrochemical performance stemming from a versatile starting structure. The redox mechanism of carbonyls proceeds by a reversible one-electron reduction to form a radical mono-anion and the reverse reaction..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Chemistry
Physical Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
01/16/2020
The Car with a Lot of Potential
Read the Fine Print
Educational Use
Rating
0.0 stars

Working in teams of three, students perform quantitative observational experiments on the motion of LEGO MINDSTORMS(TM) NXT robotic vehicles powered by the stored potential energy of rubber bands. They experiment with different vehicle modifications (such as wheel type, payload, rubber band type and lubrication) and monitor the effects on vehicle performance. The main point of the activity, however, is for students to understand that through the manipulation of mechanics, a rubber band can be used in a rather non-traditional configuration to power a vehicle. In addition, this activity reinforces the idea that elastic energy can be stored as potential energy.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Daria Kotys-Schwartz
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014
Concord Consortium: Probability Clouds
Read the Fine Print
Rating
0.0 stars

In this interactive activity, learners build computer models of atoms by adding or removing electrons, protons, and neutrons. It presents the orbital model of an atom: a nucleus consisting of protons and neutrons with electrons surrounding it in regions of high probability called orbitals. Guided tasks are provided, such as constructing a lithium atom and a carbon-12 atom in the fewest possible steps. The activity concludes with a model for building a charged hydrogen atom (an ion). Within each task, students take snapshots of their work product and answer probative questions. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Technology
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
05/17/2011
Electrifying the World
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces students to the fundamental concepts of electricity. This is accomplished by addressing questions such as "How is electricity generated," and "How is it used in every-day life?" The lesson also includes illustrative examples of circuit diagrams to help explain how electricity flows.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Wendy Lin
Date Added:
09/18/2014
Electroscope
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity from the Exploratorium provides instructions to build an electroscope, a device that detects electrical charge. Common, inexpensive materials including film canisters, 3-M Scotch Magic™ Tape, and a plastic comb are used to show the attractions and repulsions between positively and negatively charged objects. The site also provides an explanation of the results and suggestions for extension activities.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
11/09/2006
Engineering and the Periodic Table
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the periodic table and how pervasive the elements are in our daily lives. After reviewing the table organization and facts about the first 20 elements, they play an element identification game. They also learn that engineers incorporate these elements into the design of new products and processes. Acting as computer and animation engineers, students creatively express their new knowledge by creating a superhero character based on of the elements they now know so well. They will then pair with another superhero and create a dynamic duo out of the two elements, which will represent a molecule.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Megan Podlogar
Date Added:
10/14/2015
Fundamentals of Chemistry (02:02): The Atom
Only Sharing Permitted
CC BY-ND
Rating
0.0 stars

This is the second lesson in the Human Anatomy & Physiology Fundamentals of Chemistry section. This video covers the atom, as well as the proton, neutron and electron.

Subject:
Anatomy/Physiology
Chemistry
Life Science
Physical Science
Material Type:
Lecture
Provider:
Mr. Ford's Class
Author:
Scott Ford
Date Added:
09/26/2014
Fundamentals of Materials Science
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on the fundamentals of structure, energetics, and bonding that underpin materials science. It is the introductory lecture class for sophomore students in Materials Science and Engineering, taken with 3.014 and 3.016 to create a unified introduction to the subject. Topics include: an introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to atomistic and molecular models of materials; the role of electronic bonding in determining the energy, structure, and stability of materials; quantum mechanical descriptions of interacting electrons and atoms; materials phenomena, such as heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism; symmetry properties of molecules and solids; structure of complex, disordered, and amorphous materials; tensors and constraints on physical properties imposed by symmetry; and determination of structure through diffraction. Real-world applications include engineered alloys, electronic and magnetic materials, ionic and network solids, polymers, and biomaterials.
This course is a core subject in MIT’s undergraduate Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Irvine, Darrell
Marzari, Nicola
Date Added:
09/01/2005
Get Charged!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the idea of electrical energy. They learn about the relationships between charge, voltage, current and resistance. They discover that electrical energy is the form of energy that powers most of their household appliances and toys. In the associated activities, students learn how a circuit works and test materials to see if they conduct electricity. Building upon a general understanding of electrical energy, they design their own potato power experiment. In two literacy activities, students learn about the electrical power grid and blackouts.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sharon D. Perez-Suarez
Date Added:
09/18/2014