Updating search results...

Search Resources

14 Results

View
Selected filters:
  • organ
Anatomy & Physiology 1 Lab HyperDocs
Unrestricted Use
CC BY
Rating
0.0 stars

These HyperDocs are intended to be used as standalone lab resources for an online Anatomy & Physiology 1 Lab.Within the Study Activities section at the end of each document, the red, bolded, and capitalized words are meant to be replaced at the instructor's discretion.

Subject:
Anatomy/Physiology
Material Type:
Activity/Lab
Author:
Michael Anderson
Date Added:
07/30/2021
Animal Diversity Web
Read the Fine Print
Educational Use
Rating
0.0 stars

This site is a searchable encyclopedia of thousands of photos, descriptions, sound recordings, and other information about individual animal species. Find out about amphibians, arthropods, birds, fishes, insects, mammals, mollusks, reptiles, and sharks. Explore special features on mammals, skulls, and frog calls. Students are invited to contribute.

Subject:
Life Science
Zoology
Material Type:
Diagram/Illustration
Provider:
NSDL Staff
Date Added:
11/06/2008
Animal Organ Identication
Rating
0.0 stars

This presentation shows images of animal organs to aid in identification. Accessed in 2022 from Texas A&M College of Veterinary Medicine & Biomedical Sciences. Cover photo by Creab Mcselvin via Unsplash.

Subject:
Agriculture
Career and Technical Education
Material Type:
Diagram/Illustration
Author:
Texas A&M College of Veterinary Medicine & Biomedical Sciences
Date Added:
05/16/2022
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
08/22/2012
Biology, The Chemistry of Life, The Study of Life, Themes and Concepts of Biology
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

By the end of this section, you will be able to:Identify and describe the properties of lifeDescribe the levels of organization among living thingsRecognize and interpret a phylogenetic treeList examples of different sub disciplines in biology

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Date Added:
07/10/2017
Biology, The Chemistry of Life, The Study of Life, Themes and Concepts of Biology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

By the end of this section, you will be able to:Identify and describe the properties of lifeDescribe the levels of organization among living thingsRecognize and interpret a phylogenetic treeList examples of different sub disciplines in biology

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Author:
Tina B. Jones
Date Added:
08/17/2019
Bone Transplants—No Donors Necessary!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate the bone structure of a turkey femur and then create their own prototype versions as if they are biomedical engineers designing bone transplants for a bird. The challenge is to mimic the size, shape, structure, mass and density of the real bone. Students begin by watching a TED Talk about printing a human kidney and reading a news article about 3D printing a replacement bone for an eagle. Then teams gather data—using calipers to get the exact turkey femur measurements—and determine the bone’s mass and density. They make to-scale sketches of the bone and then use modeling clay, plastic drinking straws and pipe cleaners to create 3D prototypes of the bone. Next, groups each cut and measure a turkey femur cross-section, which they draw in CAD software and then print on a 3D printer. Students reflect on the design/build process and the challenges encountered when making realistic bone replacements. A pre/post-quiz, worksheet and rubric are included. If no 3D printer, shorten the activity by just making the hand-generated replicate bones.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
David Breitbach
Deanna Grandalen
Date Added:
06/23/2017
Cell-Matrix Mechanics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Mechanical forces play a decisive role during development of tissues and organs, during remodeling following injury as well as in normal function. A stress field influences cell function primarily through deformation of the extracellular matrix to which cells are attached. Deformed cells express different biosynthetic activity relative to undeformed cells. The unit cell process paradigm combined with topics in connective tissue mechanics form the basis for discussions of several topics from cell biology, physiology, and medicine.

Subject:
Anatomy/Physiology
Applied Science
Biology
Engineering
Health, Medicine and Nursing
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Spector, Myron
Yannas, Ioannis
Date Added:
09/01/2014
Fields, Forces and Flows in Biological Systems
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces the basic driving forces for electric current, fluid flow, and mass transport, plus their application to a variety of biological systems. Basic mathematical and engineering tools will be introduced, in the context of biology and physiology. Various electrokinetic phenomena are also considered as an example of coupled nature of chemical-electro-mechanical driving forces. Applications include transport in biological tissues and across membranes, manipulation of cells and biomolecules, and microfluidics.

Subject:
Applied Science
Biology
Chemistry
Engineering
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Han, Jongyoon
Manalis, Scott
Date Added:
02/01/2007
Living with Your Liver
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the function of the liver and how biomedical engineers can use liver regeneration to help people. Students test the effects of toxic chemicals on a beef liver by adding hydrogen peroxide to various liver and salt solutions. They observe, record and graph their results.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Megan Schroeder
Date Added:
10/14/2015
Molecular and Cellular Pathophysiology (BE.450)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on the fundamentals of tissue and organ response to injury from a molecular and cellular perspective. There is a special emphasis on disease states that bridge infection, inflammation, immunity, and cancer. The systems approach to pathophysiology includes lectures, critical evaluation of recent scientific papers, and student projects and presentations.
This term, we focus on hepatocellular carcinoma (HCC), chronic-active hepatitis, and hepatitis virus infections. In addition to lectures, students work in teams to critically evaluate and present primary scientific papers.

Subject:
Applied Science
Biology
Health, Medicine and Nursing
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Schauer, David
Date Added:
02/01/2005
Unlocking the Endocrine System
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how the endocrine system works and compare it to the mail delivery system. Students discuss the importance of communication in human body systems and relate that to engineering and astronauts.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014