Updating search results...

Search Resources

15 Results

View
Selected filters:
  • photon
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
08/22/2012
Biology, The Cell, Photosynthesis, The Light-Dependent Reactions of Photosynthesis
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

By the end of this section, you will be able to:Explain how plants absorb energy from sunlightDescribe short and long wavelengths of lightDescribe how and where photosynthesis takes place within a plant

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Date Added:
07/10/2017
Biology, The Cell, Photosynthesis, The Light-Dependent Reactions of Photosynthesis
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

By the end of this section, you will be able to:Explain how plants absorb energy from sunlightDescribe short and long wavelengths of lightDescribe how and where photosynthesis takes place within a plant

Subject:
Applied Science
Biology
Life Science
Material Type:
Module
Author:
Tina B. Jones
Date Added:
08/16/2019
Concord Consortium: Excited States and Photons
Read the Fine Print
Rating
0.0 stars

This concept-building activity contains a set of sequenced simulations for investigating how atoms can be excited to give off radiation (photons). Students explore 3-dimensional models to learn about the nature of photons as "wave packets" of light, how photons are emitted, and the connection between an atom's electron configuration and how it absorbs light. Registered users are able to use free data capture tools to take snapshots, drag thumbnails, and submit responses. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Applied Science
Chemistry
Education
Engineering
Life Science
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
08/21/2012
Daylighting Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the many different ways that engineers provide natural lighting to interior spaces. They analyze various methods of daylighting by constructing model houses from foam core board and simulating the sun with a desk lamp. Teams design a daylighting system for their model houses based on their observations and calculations of the optimal use of available sunlight to their structure.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Landon B. Gennetten
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
10/14/2015
Electromagnetic Radiation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a hypothetical scenario that delivers the unit's Grand Challenge Question: To apply an understanding of nanoparticles to treat, detect and protect against skin cancer. Towards finding a solution, they begin the research phase by investigating the first research question: What is electromagnetic energy? Students learn about the electromagnetic spectrum, ultraviolet radiation (including UVA, UVB and UVC rays), photon energy, the relationship between wave frequency and energy (c = λν), as well as about the Earth's ozone-layer protection and that nanoparticles are being used for medical applications. The lecture material also includes information on photo energy and the dual particle/wave model of light. Students complete a problem set to calculate frequency and energy.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Michelle Bell
Date Added:
10/14/2015
The Energy of Music
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to sound energy concepts and how engineers use sound energy. Through hands-on activities and demonstrations, students examine how we know sound exists by listening to and seeing sound waves. They learn to describe sound in terms of its pitch, volume and frequency. They explore how sound waves move through liquids, solids and gases. They also identify the different pitches and frequencies, and create high- and low-pitch sound waves.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sharon D. Perez-Suarez
Date Added:
09/18/2014
Laser Types and Uses
Read the Fine Print
Educational Use
Rating
0.0 stars

Through two classroom demos, students are introduced to the basic properties of lasers through various mediums. In the Making an Electric Pickle demonstration, students see how cellular tissue is able to conduct electricity, and how this is related to various soaking solutions. In the Red/Green Lasers through Different Mediums demonstration, students see the properties of lasers, especially diffraction, in various mediums. Follow-up lecture material introduces students to the mechanisms by which lasers function and relates these functions to the properties of light. In the associated activity, student teams research specific laser types and present their findings to the class.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Meghan Murphy
Date Added:
09/18/2014
Light Intensity Lab
Read the Fine Print
Educational Use
Rating
0.0 stars

Students complete this Beer's Law activity in class. Students examine the attenuation of various thicknesses of transparencies. From this activity, students will understand that different substances absorb light differently. This can then be transferred to X-rays to explain that different substances absorb X-rays differently, hence the need for dual-energy analysis. In looking at Beer's Law, students use the properties associated with natural logarithms. After the activity, students complete a series of questions regarding what they observed.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Garay
Date Added:
09/18/2014
Light It Up
Read the Fine Print
Educational Use
Rating
0.0 stars

Through an introduction to the design of lighting systems and the electromagnetic spectrum, students learn about the concept of daylighting as well as two types of light bulbs (lamps) often used in energy-efficient lighting design.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Janet Yowell
Landon B. Gennetten
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Photon and Neutron Scattering Spectroscopy and Its Applications in Condensed Matter
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this course is to discuss modern techniques of generation of x-ray photons and neutrons and then follow with selected applications of newly developed photon and neutron scattering spectroscopic techniques to investigations of properties of condensed matter which are of interest to nuclear engineers.

Subject:
Applied Science
Engineering
Environmental Science
Health, Medicine and Nursing
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Chen, Sow-Hsin
Date Added:
02/01/2005
Spectroscopy
Read the Fine Print
Rating
0.0 stars

What happens when an excited atom emits a photon? What can we deduce about that atom based on the photons it can emit? A series of interactive models allows you to examine how the energy levels the electrons of an atom occupy affect the types of photons that can be emitted. Use a digital spectrometer to record which wavelengths certain atoms will emit, and then use this knowledge to compare and identify types of atoms. Students will be abe to:

Subject:
Applied Science
Chemistry
Education
Engineering
Mathematics
Physical Science
Physics
Material Type:
Data Set
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/13/2011