Students learn that engineers develop different polymers to serve various functions and …
Students learn that engineers develop different polymers to serve various functions and are introduced to selectively permeable membranes. In a warm-up activity, they construct models of selectively permeable membranes using common household materials, and are reminded about simple diffusion and passive transport. In the main activity, student pairs test and compare the selective permeability of everyday polymer materials engineered for food storage (including plastic grocery bags, zipper sandwich bags, and plastic wrap) with various in-solution molecules (iodine, corn starch, food coloring, marker dye), assess how the polymer’s permeability relates to its function/purpose, and compare that to the permeability of dialysis tubing (which simulates a cell membrane).
Students are introduced to the concepts of graywater and water reuse within …
Students are introduced to the concepts of graywater and water reuse within households. They calculate the amount of used water a family generates in one day and use a model of home plumbing to find out how much graywater is produced in homes every day. They graph their results and discuss energy efficiency implications. Students are then challenged to find ways to reduce water use within the home.
Students learn about how engineers design and build shake tables to test …
Students learn about how engineers design and build shake tables to test the ability of buildings to withstand the various types of seismic waves generated by earthquakes. Just like engineers, students design and build shake tables to test their own model buildings made of toothpicks and mini marshmallows. Once students are satisfied with the performance of their buildings, they put them through a one-minute simulated earthquake challenge.
Students investigate the critical nature of foundations as they learn differences between …
Students investigate the critical nature of foundations as they learn differences between shallow and deep foundations, including the concepts of bearing pressure and settlement. Using models representing a shallow foundation and a deep pile foundation, they test, see and feel the effects in a cardboard box test bed composed of layers of pebbles, soil and sand. They also make bearing pressure calculations and recommendations for which type of foundations to use in various engineering scenarios.
Students learn how engineering design is applied to solve healthcare problems by …
Students learn how engineering design is applied to solve healthcare problems by using an engineering tool called simulation. While engineering design is commonly used to study and design everything from bridges, factories, airports to space shuttles, the use of engineering design to study healthcare administration and delivery is a relatively new concept.
Students are introduced to the engineering challenges involved with interplanetary space travel. …
Students are introduced to the engineering challenges involved with interplanetary space travel. In particular, they learn about the gravity assist or "slingshot" maneuver often used by engineers to send spacecraft to the outer planets. Using magnets and ball bearings to simulate a planetary flyby, students investigate what factors influence the deflection angle of a gravity assist maneuver.
Students learn why shock absorbers are necessary on vehicles, how they dampen …
Students learn why shock absorbers are necessary on vehicles, how they dampen the action of springs, and what factors determine the amount of dampening. They conduct an experiment to determine the effect of spring strength and port diameter on the effectiveness of a shock absorber. Using a syringe, a set of springs, and liquids of different viscosities, students determine the effects of changing pressures and liquids on the action of a model shock absorber. They analyze their data through the lens of an engineer.
To experience the three types of material stress related to rocks â …
To experience the three types of material stress related to rocks â tensional, compressional and shear â students break bars of soap using only their hands. They apply force created by the muscles in their own hands to put pressure on the soap, a model for the larger scale, real-world phenomena that forms, shapes and moves the rocks of our planet. They also learn the real-life implications of understanding stress in rocks, both for predicting natural hazards and building safe structures.
Students learn about one method used in environmental site assessments. They practice …
Students learn about one method used in environmental site assessments. They practice soil sampling by creating soil cores, studying soil profiles and characterizing soil profiles in borehole logs. They use their analysis to make predictions about what is going on in the soil and what it might mean to an engineer developing the area.
Working as if they were engineers, students design and construct model solar …
Working as if they were engineers, students design and construct model solar sails made of aluminum foil to move cardboard tube satellites through “space” on a string. Working in teams, they follow the engineering design thinking steps—empathize, define, ideate, prototype, test, redesign—to design and test small-scale solar sails for satellites and space probes. During the process, learn about Newton’s laws of motion and the transfer of energy from wave energy to mechanical energy. A student activity worksheet is provided.
To understand the challenges of satellite construction, student teams design and create …
To understand the challenges of satellite construction, student teams design and create model spacecraft to protect vital components from the harsh conditions found on Mercury and Venus. They use slices of butter in plastic eggs to represent the internal data collection components of the spacecraft. To discover the strengths and weaknesses of their designs, they test their unique thermal protection systems in a planet simulation test box that provides higher temperature and pressure conditions.
This class is jointly sponsored by the MIT Museum, Massachusetts Bay Maritime …
This class is jointly sponsored by the MIT Museum, Massachusetts Bay Maritime Artisans, the Department of Mechanical Engineering’s Center for Ocean Engineering, and the Department of Architecture. The course teaches the fundamental steps in traditional boat design and demonstrates connections between craft and modern methods. Instructors provide vessel design orientation and then students carve their own shape ideas in the form of a wooden half-hull model. Experts teach the traditional skills of visualizing and carving your model in this phase of the class. After the models are completed, a practicing naval architect guides students in translating shape from models into a lines plan. The final phase of the class is a comparative analysis of the designs generated by the group. This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.
As if they are engineers, students are tasked to design solar-powered model …
As if they are engineers, students are tasked to design solar-powered model vehicles that are speedy and compact in order to make recommendations to a local car sales company. Teams familiarize themselves with the materials by building solar-panel model car prototypes, following kit instructions, which they test for speed. After making design improvements, they test again. Then they take measurements and calculate the volume of each team’s vehicle. They rank all teams’ vehicles by speed and by size. After data analyses, reflection and team discussion, students write recommendations to the car company about the vehicle they think is best for consumers. Youngsters experience key portions of the engineering design process and learn the importance of testing and collaborating in order to make better products. Pre/post-quizzes and numerous worksheets and handouts are provided.
Students learn about the strength of bones and methods of helping to …
Students learn about the strength of bones and methods of helping to mend fractured bones. During a class demonstration, a chicken bone is broken by applying a load until it reaches a point of failure (fracture). Then, working as biomedical engineers, students teams design their own splint or cast to help repair a fractured bone, learning about the strength of materials used.
This problem- based learning lesson looks at the increase of stormwater runoff …
This problem- based learning lesson looks at the increase of stormwater runoff due to effects of humans continuing to develop more and more of the landscape by building roads, streets, sidewalks, factories, etc. Students will analyze the benefits of using green infrastructure to reduce the amount of runoff in their community and increase biodiversity. Each lab group will play the role of a resident in a community. Their goal is to use the engineering design process to create a model showing how they will decrease stormwater runoff and increase biodiversity. The lesson ends with each lab group presenting their green infrastructure plan to a board. Please note that this lesson focuses specifically on the City of Lancaster in PA, however, documents can be modified depending your specific location.
This problem- based learning lesson looks at the increase of stormwater runoff …
This problem- based learning lesson looks at the increase of stormwater runoff due to effects of humans continuing to develop more and more of the landscape by building roads, streets, sidewalks, factories, etc. Students will analyze the benefits of using green infrastructure to reduce the amount of runoff in their community and increase biodiversity. Each lab group will play the role of a resident in a community. Their goal is to use the engineering design process to create a model showing how they will decrease stormwater runoff and increase biodiversity. The lesson ends with each lab group presenting their green infrastructure plan to a board. Please note that this lesson focuses specifically on the City of Lancaster in PA, however, documents can be modified depending your specific location.
Working as engineering teams, students design and create model beam bridges using …
Working as engineering teams, students design and create model beam bridges using plastic drinking straws and tape as their construction materials. Their goal is to build the strongest bridge with a truss pattern of their own design, while meeting the design criteria and constraints. They experiment with different geometric shapes and determine how shapes affect the strength of materials. Let the competition begin!
Students work together in small groups, while competing with other teams, to …
Students work together in small groups, while competing with other teams, to explore the engineering design process through a tower building challenge. They are given a set of design constraints and then conduct online research to learn basic tower-building concepts. During a two-day process and using only tape and plastic drinking straws, teams design and build the strongest possible structure. They refine their designs, incorporating information learned from testing and competing teams, to create stronger straw towers using fewer resources (fewer straws). They calculate strength-to-weight ratios to determine the winning design.
Students are introduced to static equilibrium by learning how forces and torques …
Students are introduced to static equilibrium by learning how forces and torques are balanced in a well-designed engineering structure. A tower crane is presented as a simplified two-dimensional case. Using Popsicle sticks and hot glue, student teams design, build and test a simple tower crane model according to these principles, ending with a team competition.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.