Updating search results...

Search Resources

133 Results

View
Selected filters:
  • thermodynamics
Thermodynamics of Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces the competition between energetics and disorder that underpins materials thermodynamics. Classical thermodynamic concepts are presented in the context of phase equilibria including phase transformations, phase diagrams, and chemical reactions. The course also covers computerized thermodynamics and provides an introduction to statistical thermodynamics.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Jaramillo, Rafael
Date Added:
02/01/2021
Thermodynamics part 1: Molecular theory of gases
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Intuition of how gases generate pressure in a container and why pressure x volume is proportional to the combined kinetic energy of the molecules in the volume. Created by Sal Khan.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Sal Khan
Date Added:
06/01/2021
Thermodynamics part 2: Ideal gas law
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

To begin, Sal solves a constant temperature problem using PV=PV. Then he relates temperature to kinetic energy of a gas. In the second half of the video, he derives the ideal gas law. Created by Sal Khan.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Sal Khan
Date Added:
06/01/2021
Thermodynamics part 3: Kelvin scale and Ideal gas law example
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Sal makes the case for the Kelvin scale of temperature and absolute zero by showing that temperature is proportional to kinetic energy. Then he explains that you need to use the Kelvin scale in the ideal gas law. To finish he does a sample ideal gas law problem. Created by Sal Khan.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Sal Khan
Date Added:
06/01/2021
Thermodynamics part 5: Molar ideal gas law problem
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Sal uses the molar version of the ideal gas law to solve for the number of moles in a gas. He also shows how to convert this answer into number of molecules using Avogadro's number. Created by Sal Khan.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Sal Khan
Date Added:
06/01/2021
The Three Bears Heat Investigation--It's Just Right
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a classroom lab investigation where students use the story of the three bears to discover inadequacies in the story and discover how to make them correct. Convection, conduction and radiation are involved.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Denise M. Gerdes
Date Added:
08/10/2012
To Heat or Not to Heat?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to various types of energy with a focus on thermal energy and types of heat transfer as they are challenged to design a better travel thermos that is cost efficient, aesthetically pleasing and meets the design objective of keeping liquids hot. They base their design decisions on material properties such thermal conductivity, cost and function. These engineering and science concepts are paired with student experiences to build an understanding of heat transfer as it plays a role in their day-to-day lives. While this introduction only shows the top-level concepts surrounding the mathematics associated with heat transfer; the skills become immediately useful as students apply what they know to solve an engineering challenge.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Herring
Date Added:
09/18/2014
Turbulent Flow and Transport
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Turbulent flows, with emphasis on engineering methods. Governing equations for momentum, energy, and species transfer.
Turbulence: its production, dissipation, and scaling laws. Reynolds averaged equations for momentum, energy, and species transfer. Simple closure approaches for free and bounded turbulent shear flows. Applications to jets, pipe and channel flows, boundary layers, buoyant plumes and thermals, and Taylor dispersion, etc., including heat and species transport as well as flow fields. Introduction to more complex closure schemes, including the k-epsilon, and statistical methods in turbulence.

Subject:
Applied Science
Chemistry
Engineering
Oceanography
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Sonin, Ain
Date Added:
02/01/2002
Unified Engineering I, II, III, & IV
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subject:
Applied Science
Business and Communication
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Craig, Jennifer
Drela, Mark
Hall, Steven
Lagace, Paul
Lundqvist, Ingrid
Naeser, Gustaf
Perry, Heidi
Radovitzky, Raúl
Waitz, Ian
Young, Peter
Date Added:
09/01/2005
University Physics I: Classical Mechanics
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This is a “minimalist” textbook for a first semester of university, calculus-based physics, covering classical mechanics (including one chapter on mechanical waves, but excluding fluids), plus a brief introduction to thermodynamics. The presentation owes much to Mazur’s The Principles and Practice of Physics: conservation laws, momentum and energy, are introduced before forces, and one-dimensional setups are thoroughly explored before two-dimensional systems are considered. It contains both problems and worked-out examples.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
University of Arkansas
Author:
Julio Gea-Banacloche
Date Added:
02/08/2019
What Makes Things Go Boom?
Read the Fine Print
Educational Use
Rating
0.0 stars

Most students point to Walter White as a chemistry anti-hero—using crystalized fulminated mercury, disguised as crystal meth, as a grenade to blow up a drug lord that wronged him. Explosions are engaging, exciting parts of chemistry, yet dangerous to society when unplanned, such as unexpected water heater explosions. This unit will look at the components that make reactions spontaneous and explosive, including energy, enthalpy, entropy, and how they apply to physical and chemical changes. Focus will be on quantifying reactions and phase changes and working on the match concepts connected to kinetics and thermodynamics. To keep students engaged with the complex mathematical components, students will be using each lesson as a way to research and explore exciting explosions, such as that in Breaking Bad, and water heater explosions, building a model of their understanding. After finalizing their model of explosions, students will then apply their model to a community issue, such as air-bag safety. Students will design a safe and effective airbag that incorporates multiple concepts from the unit, and includes quantifications to ensure their safety.

Subject:
Chemistry
Physical Science
Material Type:
Lesson Plan
Unit of Study
Provider:
Yale-New Haven Teachers Institute
Provider Set:
2016 Curriculum Units Volume IV
Date Added:
08/01/2016
Wizardry and Chemistry
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how common pop culture references (Harry Potter books) can relate to chemistry. While making and demonstrating their own low-intensity sparklers (muggle-versions of magic wands), students learn and come to appreciate the chemistry involved (reaction rates, Gibb's free energy, process chemistry and metallurgy). The fun part is that all wands are personalized and depend on how well students conduct the lab. Students end the activity with a class duel a face-off between wands of two different chemical compositions. This lab serves as a fun, engaging review for stoichiometry, thermodynamics, redox and kinetics, as well as advanced placement course review.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eugene Chiappetta
Marc Bird
Date Added:
09/18/2014