In this video segment adapted from ZOOM, cast members design and build …
In this video segment adapted from ZOOM, cast members design and build door alarms using a variety of materials, including aluminum foil, batteries, and buzzers.
Students further their understanding of the engineering design process (EDP) while applying …
Students further their understanding of the engineering design process (EDP) while applying researched information on transportation technology, materials science and bioengineering. Students are given a fictional client statement (engineering challenge) and directed to follow the steps of the EDP to design prototype patient safety systems for small-size model ambulances. While following the steps of the EDP, students identify suitable materials and demonstrate two methods of representing solutions to the design challenge (scale drawings and small-scale prototypes). A successful patient safety system meets all of the project's functions and constraints, including the model patient (a raw egg) "surviving" a front-end collision test with a 1:8 ramp pitch.
In this video produced for Teachers' Domain, Chi-An Wang, a mechanical engineering …
In this video produced for Teachers' Domain, Chi-An Wang, a mechanical engineering graduate from the Massachusetts Institute of Technology, describes her process when working with New Balance to design a new triathlon shoe.
In this electrochemistry activity, learners will explore two examples of electroplating. In …
In this electrochemistry activity, learners will explore two examples of electroplating. In Part 1, zinc from a galvanized nail (an iron nail which has been coated with zinc by dipping it in molten zinc) will be plated onto a copper penny. In Part 2, copper from a penny will be plated onto a nickel.
In this activity, learners conduct a simple experiment to see how electrically …
In this activity, learners conduct a simple experiment to see how electrically charged things like plastic attract electrically neutral things like water. The plastic will attract the surface of the water into a visible bump.
This unit provides the framework for conducting an “engineering design field day” …
This unit provides the framework for conducting an “engineering design field day” that combines 6 hands-on engineering activities into a culminating school (or multi-school) competition. The activities are a mix of design and problem-solving projects inspired by real-world engineering challenges: kite making, sail cars, tall towers, strong towers and a ball and tools obstacle course. The assortment of events engage children who have varied interests and cover a range of disciplines such as aerospace, mechanical and civil engineering. An optional math test—for each of grades 1-6—is provided as an alternative activity to incorporate into the field day event. Of course, the 6 activities in this unit also are suitable to conduct as standalone activities that are unaffiliated with a big event.
This course will focus on providing students with the tools needed to …
This course will focus on providing students with the tools needed to practice responsible architecture in a contemporary context. It will familiarize students with the materials currently used in responsible practice, as well as the material properties most relevant to assembly. The course will also introduce students to materials that are untested but hold promise for future usage. Finally, the course will challenge students to refine their understanding of responsible or sustainable design practice by looking at the evolution of those ideas within the field of architecture.
This video defines energy, reviews a model of different types of energy …
This video defines energy, reviews a model of different types of energy and presents the four known stable global energy resources. This video is part of the Sustainability Learning Suites, made possible in part by a grant from the National Science Foundation. See 'Learn more about this resource' for Learning Objectives and Activities.
This video takes an in-depth look at the annual energy available on …
This video takes an in-depth look at the annual energy available on earth against the amount of energy used by humans. It uses a graphic, published by Wes Hermann in the journal Energy, to makes clear the different energy fluxes. This video is part of the Sustainability Learning Suites, made possible in part by a grant from the National Science Foundation. See 'Learn more about this resource' for Learning Objectives and Activities.
This video goes through the carbon cycle and describes how using fossil …
This video goes through the carbon cycle and describes how using fossil fuels threatens the foundation of the aquatic global food chain. This video is part of the Sustainability Learning Suites, made possible in part by a grant from the National Science Foundation. See 'Learn more about this resource' for Learning Objectives and Activities.
This video describes in detail the greenhouse effect and how recovery from …
This video describes in detail the greenhouse effect and how recovery from energy from fossile fuels results in green house gases. This video is part of the Sustainability Learning Suites, made possible in part by a grant from the National Science Foundation. See 'Learn more about this resource' for Learning Objectives and Activities.
This video distinguishes between renewable and non-renewable energy resources. It examines the …
This video distinguishes between renewable and non-renewable energy resources. It examines the question, "How long to do we have before we exhaust non-renewable resources?" It also looks at alternatives to non-renewable energy resources. This video is part of the Sustainability Learning Suites, made possible in part by a grant from the National Science Foundation. See 'Learn more about this resource' for Learning Objectives and Activities.
Students learn about the periodic table and how pervasive the elements are …
Students learn about the periodic table and how pervasive the elements are in our daily lives. After reviewing the table organization and facts about the first 20 elements, they play an element identification game. They also learn that engineers incorporate these elements into the design of new products and processes. Acting as computer and animation engineers, students creatively express their new knowledge by creating a superhero character based on of the elements they now know so well. They will then pair with another superhero and create a dynamic duo out of the two elements, which will represent a molecule.
Students explore the chemical identities of polymeric materials frequently used in their …
Students explore the chemical identities of polymeric materials frequently used in their everyday lives. They learn how chemical composition affects the physical properties of the materials that they encounter and use frequently, as well as how cross-linking affects the properties of polymeric materials.
Students learn how forces affect the human skeletal system through fractures and …
Students learn how forces affect the human skeletal system through fractures and why certain bones are more likely to break than others depending on their design and use in the body. They learn how engineers and doctors collaborate to design effective treatments with consideration for the location, fracture severity and patient age, as well as the use of biocompatible materials. Learning the lesson content prepares students for the associated activity in which they test small animal bones to failure and then design treatment repair plans.
Students are introduced to the multidisciplinary field of material science. Through a …
Students are introduced to the multidisciplinary field of material science. Through a class demo and PowerPoint® presentation, they learn the basic classes of materials (metals, ceramics, polymers, composites) and how they differ from one another, considering concepts such as stress, strain, ductile, brittle, deformation and fracture. Practical examples help students understand how the materials are applied, and further information about specific research illustrates how materials and material science are useful in space exploration. A worksheet and quiz are provided.
In this video segment adapted from FETCH!, contestants are challenged to use …
In this video segment adapted from FETCH!, contestants are challenged to use materials from a garbage dump to build a boat that floats, can be steered, and is propelled by something other than oars.
In this video segment adapted from NOVA, watch residents of the Peruvian …
In this video segment adapted from NOVA, watch residents of the Peruvian Andes build a suspension bridge made entirely of grass. The ancient Inca were a textile society and thus skilled in working with natural fibers including alpaca and cotton. Still, it might surprise people today that their solution to crossing the canyons and gorges of their mountainous empire featured another fibrous material: grass. When you consider how they built a simple suspension bridge, you'll realize that not only was this a practical solution, it was also a safe one. In this video segment adapted from NOVA, watch residents of the Peruvian Andes as they build a traditional and functioning grass bridge the likes of which enabled the ancient Inca people to flourish for several hundred years. Grades 3-12.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.