Students become familiar with the online Renewable Energy Living Lab interface and …
Students become familiar with the online Renewable Energy Living Lab interface and access its real-world solar energy data to evaluate the potential for solar generation in various U.S. locations. They become familiar with where the most common sources of renewable energy are distributed across the U.S. Through this activity, students and teachers gain familiarity with the living lab's GIS graphic interface and query functions, and are exposed to the available data in renewable energy databases, learning how to query to find specific information for specific purposes. The activity is intended as a "training" activity prior to conducting activities such as The Bright Idea activity, which includes a definitive and extensive end product (a feasibility plan) for students to create.
Students use real-world data to evaluate the feasibility of solar energy and …
Students use real-world data to evaluate the feasibility of solar energy and other renewable energy sources in different U.S. locations. Working in small groups, students act as engineers evaluating the suitability of installing solar panels at four company locations. They access data from the online Renewable Energy Living Lab from which they make calculations and analyze how successful solar energy generation would be, as well as the potential for other power sources at those locations. Then they summarize their results, analysis and recommendations in the form of feasibility plans prepared for a CEO.
In this activity, students learn how engineers use solar energy to heat …
In this activity, students learn how engineers use solar energy to heat buildings by investigating the thermal storage properties of some common materials: sand, salt, water and shredded paper. Students then evaluate the usefulness of each material as a thermal storage material to be used as the thermal mass in a passive solar building.
This lesson will introduce solar power, how it works, and energy storage …
This lesson will introduce solar power, how it works, and energy storage to students through hands on materials and activities. It will also foster an understanding of renewable energy and how we can use renewable energy to power our cities.
It has become almost impossible to imagine what our lives would be …
It has become almost impossible to imagine what our lives would be like without the many benefits of packaging – just think about the different packaging and single-use items you use on a daily basis. Yet as our global population grows in size and affluence, both our collective demand for packaging materials and the waste we generate as a result will increase dramatically.
Currently, large amounts of packaging waste escape formal collection and recycling systems and eventually end up polluting the environment. Moreover, their material value is forever lost to the economy. The Ellen MacArthur Foundation estimates that uncollected plastic packaging waste alone is worth somewhere between 80 to 120 billion dollars a year.
So how can we improve packaging systems in order to capture this wasted potential? Clearly, the way we currently design, recover, and reuse packaging urgently needs a rethink!
In this course, you will learn about the design of sustainable packaging systems. To do so we will explore the design and business strategies of the circular economy.
Contrary to our current industrial model, which extracts, uses and ultimately disposes of resources, a circular economy is regenerative by design. This means that products and services are reimagined from a systems perspective in order to minimize waste, maximize positive economic, environmental and social impacts, and keep resources locked in a cycle of restoration.
This course is for you if you are interested in learning about sustainable packaging design. You’ll also benefit if you are a professional in the packaging industry and want to learn how to find circular opportunities in your work. Students – particularly in design – will be able to broaden their knowledge of circular design and business strategies.
Students explore how the efficiency of a solar photovoltaic (PV) panel is …
Students explore how the efficiency of a solar photovoltaic (PV) panel is affected by the ambient temperature. They learn how engineers predict the power output of a PV panel at different temperatures and examine some real-world engineering applications used to control the temperature of PV panels.
Students learn about wind as a source of renewable energy and explore …
Students learn about wind as a source of renewable energy and explore the advantages and disadvantages wind turbines and wind farms. They also learn about the effectiveness of wind turbines in varying weather conditions and how engineers work to create wind power that is cheaper, more reliable and safer for wildlife.
People use energy in all aspects of their lives for cooking, lighting …
People use energy in all aspects of their lives for cooking, lighting and entertainment. Much of this energy use takes place in buildings, such as our homes. To save money and reduce the impact on our environment, many people are reducing their energy use. One way is to hire engineers to perform home energy audits to understand the ways we use energy and identify ways we can conserve energy. In this activity, students act as energy conservation engineers and identify the ways energy is conserved or wasted. They also learn many ways to personally conserve energy everyday.
This lesson uses a hands-on approach to teach about renewable energy with …
This lesson uses a hands-on approach to teach about renewable energy with a case study in wind turbines. This lesson also uses engineering design to help situate renewable energy within a practical human society.
In this lesson students are introduced to Architect, Jeremy Peang-Meth. Mr. Peang-Meth …
In this lesson students are introduced to Architect, Jeremy Peang-Meth. Mr. Peang-Meth was asked to design a local, renewable energy source for building located in the heart of New York City. While the tall buildings surrounding the site caused some obvious problems, there were also some benefits to the site. Students are asked to consider the constraints posed by the location of the building and then, based on their analysis of those constraints, to find a roof location that will provide good energy capture from the wind. After they have made that choice, students are invited to view Mr. Peang-Meth’s solution as he presents it in the provided video.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.