Let's jump out of that boring (okay, it wasn't THAT boring) 2-D …
Let's jump out of that boring (okay, it wasn't THAT boring) 2-D world into the exciting 3-D world that we all live and breath in. Instead of functions of x that can be visualized as lines, we can have functions of x and y that can be visualized as surfaces. But does the idea of a derivative still make sense? Of course it does! As long as you specify what direction you're going in. Welcome to the world of partial derivatives!
This 8-minute video lecture demonstrates how to use a position vector valued …
This 8-minute video lecture demonstrates how to use a position vector valued function to describe a curve or path. [Calculus playlist: Lesson 133 of 156]
Calculus Revisited is a series of videos and related resources that covers …
Calculus Revisited is a series of videos and related resources that covers the materials normally found in freshman- and sophomore-level introductory mathematics courses. Complex Variables, Differential Equations, and Linear Algebra is the third course in the series, consisting of 20 Videos, 3 Study Guides, and a set of Supplementary Notes. Students should have mastered the first two courses in the series (Single Variable Calculus and Multivariable Calculus) before taking this course. The series was first released in 1972, but equally valuable today for students who are learning these topics for the first time. About the Instructor Herb Gross has taught math as senior lecturer at MIT and was the founding math department chair at Bunker Hill Community College. He is the developer of the Mathematics As A Second Language website, providing arithmetic and algebra materials to elementary and middle school teachers. Acknowledgements Funding for this resource was provided by the Gabriella and Paul Rosenbaum Foundation. Other Resources by Herb Gross Calculus Revisited: Single Variable Calculus Calculus Revisited: Multivariable Calculus
Calculus Revisited is a series of videos and related resources that covers …
Calculus Revisited is a series of videos and related resources that covers the materials normally found in freshman- and sophomore-level introductory mathematics courses. Multivariable Calculus is the second course in the series, consisting of 26 videos, 4 Study Guides, and a set of Supplementary Notes. The series was first released in 1971 as a way for people to review the essentials of calculus. It is equally valuable for students who are learning calculus for the first time. About the Instructor Herb Gross has taught math as senior lecturer at MIT and was the founding math department chair at Bunker Hill Community College. He is the developer of the Mathematics As A Second Language website, providing arithmetic and algebra materials to elementary and middle school teachers. Acknowledgements Funding for this resource was provided by the Gabriella and Paul Rosenbaum Foundation. Other Resources by Herb Gross Calculus Revisited: Single Variable Calculus Calculus Revisited: Complex Variables, Differential Equations, and Linear Algebra
Calculus Revisited is a series of videos and related resources that covers …
Calculus Revisited is a series of videos and related resources that covers the materials normally found in a freshman-level introductory calculus course. The series was first released in 1970 as a way for people to review the essentials of calculus. It is equally valuable for students who are learning calculus for the first time. About the Instructor Herb Gross has taught math as senior lecturer at MIT and was the founding math department chair at Bunker Hill Community College. He is the developer of the Mathematics As A Second Language website, providing arithmetic and algebra materials to elementary and middle school teachers. Acknowledgements Funding for this resource was provided by the Gabriella and Paul Rosenbaum Foundation. Other Resources by Herb Gross Calculus Revisited: Multivariable Calculus Calculus Revisited: Complex Variables, Differential Equations, and Linear Algebra
In this tutorial, we will learn to approximate differentiable functions with polynomials. …
In this tutorial, we will learn to approximate differentiable functions with polynomials. Beyond just being super cool, this can be useful for approximating functions so that they are easier to calculate, differentiate or integrate. So whether you will have to write simulations or become a bond trader (bond traders use polynomial approximation to estimate changes in bond prices given interest rate changes and vice versa), this tutorial could be fun. If that isn't motivation enough, we also come up with one of the most epic and powerful conclusions in all of mathematics in this tutorial: Euler's identity.
This course is a brief introduction to sequences and infinite series. We …
This course is a brief introduction to sequences and infinite series. We begin with a discussion of power series and develop tests for convergence and non-convergence. Taylor series are introduced and lead to an analysis of power series in general. This is a 1-credit course that can be taken any time after the student has completed Calculus I. All course content created by Javad Moulai. Content added to OER Commons by Julia Greider.
This course is a brief introduction to sequences and infinite series. We …
This course is a brief introduction to sequences and infinite series. We begin with a discussion of power series and develop tests for convergence and non-convergence. Taylor series are introduced and lead to an analysis of power series in general. This is a 1-credit course that can be taken any time after the student has completed Calculus I.
You can parameterize a line with a position vector valued function and …
You can parameterize a line with a position vector valued function and understand what a differential means in that context already. This tutorial will take things further by parametrizing surfaces (2 parameters baby!) and have us thinking about partial differentials.
Finding line integrals to be a bit boring? Well, this tutorial will …
Finding line integrals to be a bit boring? Well, this tutorial will add new dimension to your life by explore what surface integrals are and how we can calculate them.
This series of videos focusing on calculus covers calculating derivatives, power rule, …
This series of videos focusing on calculus covers calculating derivatives, power rule, product and quotient rules, chain rule, implicit differentiation, derivatives of common functions.
You can take the derivatives of f(x) and g(x), but what about …
You can take the derivatives of f(x) and g(x), but what about f(g(x)) or g(f(x))? The chain rule gives us this ability. Because most complex and hairy functions can be thought of the composition of several simpler ones (ones that you can find derivatives of), you'll be able to take the derivative of almost any function after this tutorial. Just imagine.
The topic that is now known as "calculus" was really called "the …
The topic that is now known as "calculus" was really called "the calculus of differentials" when first devised by Newton (and Leibniz) roughly four hundred years ago. To Newton, differentials were infinitely small "changes" in numbers that previous mathematics didn't know what to do with. Think this has no relevence to you? Well how would you figure out how fast something is going *right* at this moment (you'd have to figure out the very, very small change in distance over an infinitely small change in time)? This tutorial gives a gentle introduction to the world of Newton and Leibniz.
We told you about the derivatives of many functions, but you might …
We told you about the derivatives of many functions, but you might want proof that what we told you is actually true. That's what this tutorial tries to do!
Calculus is designed for the typical two- or three-semester general calculus course, …
Calculus is designed for the typical two- or three-semester general calculus course, incorporating innovative features to enhance student learning. The book guides students through the core concepts of calculus and helps them understand how those concepts apply to their lives and the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Volume 1 covers functions, limits, derivatives, and integration
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.