Students will focus on neutral buoyancy and how it plays a role …
Students will focus on neutral buoyancy and how it plays a role on a ketchup packet in a bottle of water an apply knowledge obtained to astronauts in space.
In this experiment, students create a "lava lamp" - a beaker on …
In this experiment, students create a "lava lamp" - a beaker on a hotplate, and investigate buoyancy, convection and other fluid and thermodynamic properties using ink, water, vegetable oil and Alka-Seltzer tablets. The activity is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications.
Siuslaw Elementary students designed, engineered and constructed functioning ROV's to explore ways …
Siuslaw Elementary students designed, engineered and constructed functioning ROV's to explore ways to solve underwater challenges. Engineering exercises included functionality requirements, buoyancy and floatation, electronics, thrust and maneuverability.
This article highlights activities for elementary students that model icebergs and develop …
This article highlights activities for elementary students that model icebergs and develop an informal understanding of the concepts of buoyancy and density. Suggestions for inquiry-based activities are included.
In this design challenge, students learn about the Vikings from an engineering …
In this design challenge, students learn about the Vikings from an engineering point-of-view. While investigating the history and anatomy of Viking ships, they learn how engineering solutions are shaped by the surrounding environment and availability of resources. Students apply this knowledge to design, build and test their own model Viking ships.
Students use modeling clay, a material that is denser than water and …
Students use modeling clay, a material that is denser than water and thus ordinarily sinks in water, to discover the principle of buoyancy. They begin by designing and building boats out of clay that will float in water, and then refine their designs so that their boats will carry as great a load (metal washers) as possible. Building a clay boat to hold as much weight as possible is an engineering design problem. Next, they compare amount of water displaced by a lump of clay that sinks to the amount of water displaced by the same lump of clay when it is shaped so as to float. Determining the masses of the displaced water allows them to arrive at Archimedes' principle, whereby the mass of the displaced water equals the mass of the floating clay boat.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.