Updating search results...

Search Resources

2759 Results

View
Selected filters:
  • Physics
Crash! Bang!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the physical force of linear momentum movement in a straight line by investigating collisions. They learn an equation that engineers use to describe momentum. Students also investigate the psychological phenomenon of momentum; they see how the "big mo" of the bandwagon effect contributes to the development of fads and manias, and how modern technology and mass media accelerate and intensify the effect.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Date Added:
09/18/2014
Crash Force Bang! Explore Science Club Lesson Plan
Unrestricted Use
Public Domain
Rating
0.0 stars

Let's explore some science and math around why seatbelts work. Check out the career video from Billie Jo Deal, Transportation Safety Coordinator from the Oregon Department of Transportation, about how she works to keep people safe on the roads. Then, in the Discovery Challenge, we build crash models and calculate restraining forces.

This lesson introduces NGSS standards, and those standards are listed in the lesson.

Videos are part of the Explore Science Club series, an asynchronous online learning program using YouTube videos that connects elementary and middle school students to STEM professionals through hands-on lessons where students explore science and engineering practices related to the highlighted careers. There is an option to use FlipGrid, an online video recording platform for students to share their discoveries

More info: www.go-stem.org

Subject:
Mathematics
Measurement and Data
Physical Science
Physics
Material Type:
Activity/Lab
Author:
Carrie Caselton Lowe
Date Added:
08/26/2020
Create a Pinhole Camera
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students construct their own pinhole camera to observe the behavior of light.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Alison Pienciak
Frank Burkholder
Janet Yowell
Luke Simmons
Date Added:
10/14/2015
Create a Safe Bungee Cord for Washy!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the role engineers and mathematicians play in developing the perfect bungee cord length by simulating and experimenting with bungee jumping using washers and rubber bands. Working as if they are engineers for a (hypothetical) amusement park, students are challenged to develop a show-stopping bungee jumping ride that is safe. To do this, they must find the maximum length of the bungee cord that permits jumpers (such as brave Washy!) to get as close to the ground as possible without going "splat"! This requires them to learn about force and displacement and run an experiment. Student teams collect and plot displacement data and calculate the slope, linear equation of the line of best fit and spring constant using Hooke's law. Students make hypotheses, interpret scatter plots looking for correlations, and consider possible sources of error. An activity worksheet, pre/post quizzes and a PowerPoint® presentation are included.

Subject:
Mathematics
Physical Science
Physics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marc Frank
Date Added:
02/17/2017
Create and Control a Popsicle Stick Finger Robot
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to servos and the flex sensor as they create simple, one-jointed, finger robots controlled by Arduino. Servos are motors with feedback and are extensively used in industrial and consumer applications—from large industrial car-manufacturing robots that use servos to hold heavy metal and precisely weld components together, to prosthetic hands that rely on servos to provide fine motor control. Students use Arduino microcontrollers and flex sensors to read finger flexes, which they process to send angle information to the servos. Students create working circuits; use the constrain, map and smoothing commands; learn what is meant by library and abstraction in a coding context; and may even combine team finger designs to create a complete prosthetic hand of bendable fingers.

Subject:
Applied Science
Computer Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
MakerChallenges
Author:
Daniel Godrick
Date Added:
10/20/2017
Creating Electronic Textile Art Pins
Read the Fine Print
Educational Use
Rating
0.0 stars

Students’ background understanding of electricity and circuit-building is reinforced as they create wearable, light-up e-textile pins. They also tap their creative and artistic abilities as they plan and produce attractive end product “wearables.” Using fabric, LED lights, conductive thread (made of stainless steel) and small battery packs, students design and fabricate their own unique light-up pins. This involves putting together the circuitry so the sewn-in LEDs light up. Connecting electronics with stitching instead of soldering gives students a unique and tangible understanding of how electrical circuits operate.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Angela Sheehan
Emma Biesiada
Date Added:
02/09/2017
Creating Your Own Sunset
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity gives a visual representation of how we are able to observe many colors in a sunrise or sunset.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Simulation
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Sherrie Seidensticker
Date Added:
10/04/2011
Creating a Partial Pressure Diagram for the Cu-CO2-O2-H2O System
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will be guided through the procedure for creating a partial-pressure diagram in the low-temperature system Cu-CO2-O2-H2O system for the minerals cuprite, tenorite, native copper, azurite, and malachite. They will write chemical reactions and use Gibbs Free Energies to calculate Log K and plot lines on a graph with axes Log P CO2 and Log PO2 for stability boundaries between minerals. They are provided with data to then create their own diagram for the Fe-CO2-O2 system.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Terri Woods
Date Added:
08/29/2022
Creating an Electromagnet
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams investigate the properties of electromagnets. They create their own small electromagnet and experiment with ways to change its strength to pick up more paper clips. Students learn about ways that engineers use electromagnets in everyday applications.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Denise Carlson
Joe Friedrichsen
Malinda Schaefer Zarske
Xochitl Zamora Thompson
Date Added:
09/18/2014
Crystal Structure Analysis
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the following topics: X-ray diffraction: symmetry, space groups, geometry of diffraction, structure factors, phase problem, direct methods, Patterson methods, electron density maps, structure refinement, how to grow good crystals, powder methods, limits of X-ray diffraction methods, and structure data bases.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Mueller, Peter
Date Added:
02/01/2010
Crystal Structure Refinement
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and inorganic molecules.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Mueller, Peter
Date Added:
09/01/2009
Crystallization and Melting of Diopside - Anorthite
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This short exercise introduces students to phase diagrams that have a eutectic and a peritectic. After learning about such phase diagrams, students answer questions about melt composition, temperature, cooling and melting, crystalization, and melt:crystal ratios.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Dexter Perkins
Date Added:
09/07/2020
Crystallization of Magmas
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this laboratory exercise students explore the crystallization behavior of a rock of known composition at 1 atmosphere pressure using experimental and numerical methods and phase diagrams. They also create and use diagrams to classify their igneous rock and identify its tectonic setting. They compare results of the three methods, and then give a presentation of their results to the class.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
John Ayers
Date Added:
08/28/2019
CurvedLand: An Applet to Simulate Curved Space
Unrestricted Use
CC BY
Rating
0.0 stars

CurvedLand is an applet for showing what the world would look like with different geometry. It is named CurvedLand in tribute to the science fiction novel, Flatland, by Edwin Abbott, which describes the adventures of a two-dimensional being who is visited by a stranger from the third dimension.

One of the central ideas of Einstein's theory of relativity is that space and time curve in response to the matter and energy within them. A curved space is one that doesn't obey the usual laws of Euclidean geometry: the angles of a triangle don't generally add up to 180 degrees, the circumference of a circle isn't pi times the diameter, parallel lines can either converge towards each other or move apart, and so on.

Since the geometry we observe is very close to Euclidean, however, it is hard for most of us to picture what this difference would mean physically. If you draw a circle and a diameter, how could the ratio be anything other than pi? To answer this question, imagine that as you move around in space the shapes of objects appear to distort. This is what happens in curved space. If you draw a circle around yourself and then start walking around it to pace out the circumference, it will look to you like you are walking along a constantly changing ellipse.

CurvedLand illustrates this distortion as it would appear in a two-dimensional curved space. The structure is similar to a mapping program. You can place objects of different shapes in different places in the world and then move around the space to see what they look like from different perspectives.

Subject:
Applied Science
Computer Science
Geometry
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Smith College
Author:
Gary Felder
Stephanie Erickson
Date Added:
07/29/2020