Updating search results...

Search Resources

133 Results

View
Selected filters:
  • thermodynamics
Phase Transitions in the Earth's Interior
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course discusses phase transitions in Earth’s interior. Phase transitions in Earth materials at high pressures and temperatures cause the seismic discontinuities and affect the convections in the Earth’s interior. On the other hand, they enable us to constrain temperature and chemical compositions in the Earth’s interior. However, among many known phase transitions in mineral physics, only a few have been investigated in seismology and geodynamics. This course reviews important papers about phase transitions in mantle and core materials.

Subject:
Atmospheric Science
Geology
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Shim, Sang-Heon
Date Added:
02/01/2005
Physical Chemistry II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers elementary statistical mechanics, transport properties, kinetic theory, solid state, reaction rate theory, and chemical reaction dynamics.
Acknowledgements
The staff for this course would like to acknowledge that these course materials include contributions from past instructors, textbooks, and other members of the MIT Chemistry Department affiliated with course #5.62. Since the following works have evolved over a period of many years, no single source can be attributed.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Field, Robert
Griffin, Robert
Date Added:
02/01/2008
Physics I
Unrestricted Use
CC BY
Rating
0.0 stars

Continuation of Physics 1. Topics include: simple harmonic motion, gravitation, fluid mechanics, waves, the kinetic theory of gases, and the first and second laws of thermodynamics. This course is a calculus-based physics course that is required by four-year colleges in science and engineering studies.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
North Shore Community College
Author:
Joyce Jeong
Date Added:
05/14/2019
Physics (PHYS 100 Non Science Majors)
Unrestricted Use
CC BY
Rating
0.0 stars

This is a course for non-science majors that is a survey of the central concepts in physics relating everyday experiences with the principles and laws in physics on a conceptual level. Upon successful completion of this course, students will be able to: Describe basic principles of motion and state the law of inertia; Predict the motion of an object by applying Newtonęs laws when given the mass, a force, the characteristics of motion and a duration of time; Summarize the law of conservation of energy and explain its importance as the fundamental principle of energy as a –law of nature”; Explain the use of the principle of Energy conservation when applied to simple energy transformation systems; Define the Conservation of Energy Law as the 1st Law of Thermodynamics and State 2nd Law of Thermodynamics in 3 ways; Outline the limitations and risks associated with current societal energy practices,and explore options for changes in energy policy for the next century and beyond; Describe physical aspects of waves and wave motion; and explain the production of electromagnetic waves, and distinguish between the different parts of the electromagnetic spectrum.

Subject:
Physical Science
Physics
Material Type:
Assessment
Full Course
Reading
Syllabus
Provider:
Washington State Board for Community & Technical Colleges
Provider Set:
Open Course Library
Date Added:
05/03/2013
Polymer Physics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course presents the mechanical, optical, and transport properties of polymers with respect to the underlying physics and physical chemistry of polymers in melt, solution, and solid state. Topics include conformation and molecular dimensions of polymer chains in solutions, melts, blends, and block copolymers; an examination of the structure of glassy, crystalline, and rubbery elastic states of polymers; thermodynamics of polymer solutions, blends, crystallization; liquid crystallinity, microphase separation, and self-assembled organic-inorganic nanocomposites. Case studies include relationships between structure and function in technologically important polymeric systems.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Thomas, Edwin
Date Added:
02/01/2007
Popping up Some Fun!
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this hands-on science lesson, the students will observe (and eat!) cooked popcorn and uncooked popcorn. The students will understand why popcorn pops. The students will weigh cooked and uncooked popcorn to understand why cooked popcorn weighs more.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Date Added:
11/06/2014
Principles of Chemical Science
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides an introduction to the chemistry of biological, inorganic, and organic molecules. The emphasis is on basic principles of atomic and molecular electronic structure, thermodynamics, acid-base and redox equilibria, chemical kinetics, and catalysis. One year of high school chemistry is the expected background for this freshman-level course.
The aims include developing a unified and intuitive view of how electronic structure controls the three-dimensional shape of molecules, the physical and chemical properties of molecules in gases, liquids and solids, and ultimately the assembly of macromolecules as in polymers and DNA. Relationships between chemistry and other fundamental sciences such as biology and physics are emphasized, as are the relationships between the science of chemistry to its applications in environmental science, atmospheric chemistry and electronic devices. 

Acknowledgements
Professor Drennan would like to acknowledge the contributions of MIT Lecturer Dr. Elizabeth Vogel Taylor, Professor Sylvia Ceyer, and Professor Robert Silbey to the development of this course and its materials.

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Drennan, Catherine
Date Added:
09/01/2014
Principles of Chemical Science
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

5.112 is an introductory chemistry course for students with an unusually strong background in chemistry. Knowledge of calculus equivalent to MIT course 18.01 is recommended. Emphasis is on basic principles of atomic and molecular electronic structure, thermodynamics, acid-base and redox equilibria, chemical kinetics, and catalysis. The course also covers applications of basic principles to problems in metal coordination chemistry, organic chemistry, and biological chemistry.

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Ceyer, Sylvia
Cummins, Christopher
Date Added:
09/01/2005
Principles of Chemical Science
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides an introduction to the chemistry of biological, inorganic, and organic molecules. The emphasis is on basic principles of atomic and molecular electronic structure, thermodynamics, acid-base and redox equilibria, chemical kinetics, and catalysis.
In an effort to illuminate connections between chemistry and biology, a list of the biology-, medicine-, and MIT research-related examples used in 5.111 is provided in Biology-Related Examples.
Acknowledgements
Development and implementation of the biology-related materials in this course were funded through an HHMI Professors grant to Prof. Catherine L. Drennan. Videos and captioning were made possible and supported by the MIT Class of 2009.

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Drennan, Catherine
Taylor, Elizabeth
Date Added:
09/01/2008
Quasi-Balanced Circulations in Oceans and Atmospheres
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces the students to dynamics of large-scale circulations in oceans and atmospheres. Basic concepts include mass and momentum conservation, hydrostatic and geostrophic balance, and pressure and other vertical coordinates. It covers the topics of fundamental conservation and balance principles for large-scale flow, generation and dissipation of quasi-balanced eddies, as well as equilibrated quasi-balanced systems. Examples of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments can be found in the accompaniment laboratory course 12.804, Large-scale Flow Dynamics Lab.

Subject:
Applied Science
Atmospheric Science
Engineering
Oceanography
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Emanuel, Kerry
Date Added:
09/01/2009
Redox reactions and electrochemistry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Oxidation and reduction reactions power your phone and make it possible for your body to use the oxygen you inhale. We will learn about oxidation states (numbers), oxidation-reduction (redox) reactions, galvanic/voltaic cells, electrolytic cells, cell potentials, and how electrochemistry is related to thermodynamics and equilibrium.

Subject:
Chemistry
Physical Science
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Date Added:
06/26/2019
Reversible Reactions
Unrestricted Use
CC BY
Rating
0.0 stars

Watch a reaction proceed over time. How does total energy affect a reaction rate? Vary temperature, barrier height, and potential energies. Record concentrations and time in order to extract rate coefficients. Do temperature dependent studies to extract Arrhenius parameters. This simulation is best used with teacher guidance because it presents an analogy of chemical reactions.

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Jack Barbera
Linda Koch
Ron LeMaster
Wendy Adams
Date Added:
09/01/2005
Reversible Reactions (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Watch a reaction proceed over time. How does total energy affect a reaction rate? Vary temperature, barrier height, and potential energies. Record concentrations and time in order to extract rate coefficients. Do temperature dependent studies to extract Arrhenius parameters. This simulation is best used with teacher guidance because it presents an analogy of chemical reactions.

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Jack Barbera
Linda Koch
Ron LeMaster
Wendy Adams
Date Added:
09/02/2009
Rockets!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to statics and dynamics, free-body diagrams, combustion and thermodynamics to gain an understanding of the forces needed to lift rockets off the ground. They learn that thrust force is needed to launch rockets into space and the energy for thrust is stored as chemical energy in the rocket's fuel. Then, using the law of conservation of energy, students learn that the chemical energy of the fuel is converted into work and heat energy during a rocket launch. A short PowerPoint® presentation is provided, including two example problems for stoichiometry review. An optional teacher demonstration is described as an extension activity.

Subject:
Education
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Taylor Dizon-Kelly
Date Added:
10/14/2015
Smithsonian Science Starter: A Cool Lesson on Thermal Expansion
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This lesson guides students through an investigation of the expansion and contraction of metal due to changes in temperature.

Subject:
Applied Science
Physical Science
Material Type:
Lesson Plan
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
09/01/2022
Smithsonian Science Starter: Astronaut Jack Fischer Finds Himself in Hot Water... Sort of
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Astronaut Jack "2fish" Fischer stopped by for the latest episode of the Smithsonian's ISS Science and tried out a hands-on experiment involving boiling water.

Subject:
Physical Science
Material Type:
Activity/Lab
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
09/02/2022
Smithsonian Science Starter: Brrrrr! How Do Extreme Temperatures Affect Spacewalks? - ISS Science
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Astronaut Randy Bresnik talks about the challenges of working in the raging heat and freezing cold. Also check out an experiment you can do in your classroom.

Subject:
Applied Science
Physical Science
Material Type:
Lesson
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
09/01/2022