In this demonstration, amaze learners by performing simple tricks using mirrors. These …
In this demonstration, amaze learners by performing simple tricks using mirrors. These tricks take advantage of how a mirror can reflect your right side so it appears to be your left side. To make the effect more dramatic, cover the mirror with a cloth, climb onto the table, straddle the mirror, and then drop the cloth as you appear to "take off." This resource contains information about how this trick was applied during the making of the movie "Star Wars."
This trick from Exploratorium physicist Paul Doherty lets you add together the …
This trick from Exploratorium physicist Paul Doherty lets you add together the bounces of two balls and send one ball flying. When we tried this trick on the Exploratorium's exhibit floor, we gathered a crowd of visitors who wanted to know what we were doing. We explained that we were engaged in serious scientific experimentation related to energy transfer. Some of them may have believed us. If you'd like to go into the physical calculations of this phenomenam, see the related resource "Bouncing Balls" - it's the same activity but with the math explained.
In this optics activity, learners discover that when they rotate a special …
In this optics activity, learners discover that when they rotate a special black and white pattern called a Benham's Disk, it produces the illusion of colored rings. Learners experiment with the speed of rotation and direction of rotation to observe varying patterns. Use this activity to explain to learners how our eyes detect color and how different color receptors in the eye respond at different rates.
In this activity, learners burn a peanut, which produces a flame that …
In this activity, learners burn a peanut, which produces a flame that can be used to boil away water and count the calories contained in the peanut. Learners use a formula to calculate the calories in a peanut and then differentiate between food calories and physicist calories as well as calories and joules.
In this fun and interactive online exhibit, the straight lines of a …
In this fun and interactive online exhibit, the straight lines of a tile wall appear to curve. The learner moves the rows of tiles and changes the color of the grout to achieve the intriguing effect. Although the exhibit requires a computer, the concept can be adapted into a longer, hands-on exploration of optical illusions.
In this demonstration, cook a cake using the heat produced when the …
In this demonstration, cook a cake using the heat produced when the cake batter conducts an electric current. Because of safety concerns, this activity should be conducted as a demonstration only and learners should be kept at a safe distance.
Cardboard Automata are a playful way to explore simple machine elements while …
Cardboard Automata are a playful way to explore simple machine elements while creating a mechanical sculpture. This activity was inspired by the Cabaret Mechanical Theatre, a group of automata builders based in England. Artists like Paul Spooner, Keith Newstead, and Carlos Zapata build beautiful narrative pieces using elegant mechanisms based on cams, gears, springs, and linkages. Working with simple materials, this activity is easy to get started, and may become as complex as your mechanical sculpture ideas.
This is a quick activity that shows how large amounts of rock …
This is a quick activity that shows how large amounts of rock and sediment are added to the edge of continents during subduction. You may ask, how can such a huge phenomenon be demonstrated quickly and cheaply? The answer is simple: with a cookie!
In this activity, learners conduct an oxidation experiment that turns old pennies …
In this activity, learners conduct an oxidation experiment that turns old pennies bright and shiny. Learners soak 20 dull, dirty pennies in a bowl of salt and vinegar for five minutes. They rinse half the pennies with water, then compare the rinsed pennies to the unrinsed after all pennies sit and dry for about an hour. Learners also observe what happens when they submerge a screw and nail in the liquid compared to a nail only half-way submerged.
In this activity, learners use crayons to draw conclusions about rocks and …
In this activity, learners use crayons to draw conclusions about rocks and the rock cycle. Learners form crayons ((which can be "weathered"--heated, compressed and cooled--like rocks) into models of sedimentary, metamorphic, and igneous rocks.
In this fun gardening activity, learners discover their soil type. There are …
In this fun gardening activity, learners discover their soil type. There are three basic soil types: sand, silt, and clay. Using only a jar, water and a bit of water softener, learners will sort their soil into its parts. The activity includes a "What's going on" section as well as information about what makes a soil ideal for gardening.
In this electrochemistry activity, learners will explore two examples of electroplating. In …
In this electrochemistry activity, learners will explore two examples of electroplating. In Part 1, zinc from a galvanized nail (an iron nail which has been coated with zinc by dipping it in molten zinc) will be plated onto a copper penny. In Part 2, copper from a penny will be plated onto a nickel.
In this activity, learners conduct a simple experiment to see how electrically …
In this activity, learners conduct a simple experiment to see how electrically charged things like plastic attract electrically neutral things like water. The plastic will attract the surface of the water into a visible bump.
This online exhibit is a visual illusion in which a fuzzy blue …
This online exhibit is a visual illusion in which a fuzzy blue dot disappears into a green background. The illusion is created by the tiny jittering movements that your eyes are continually making. Take your investigation further by making your own hands-on fading dot illusion - instructions are at the Exploratorium Snack website (see related link).
In this hands-on botany activity, learners sprout vegetables in film canisters. Learners …
In this hands-on botany activity, learners sprout vegetables in film canisters. Learners grow nine seeds each of cabbage, radish, and parsley, experimenting with changing one variable (light, water, or temperature) to explore differences in the germination preferences of the plants. If film canisters aren't available, other small, opaque containers with lids can be substituted.
This hands-on activity shows you how to build basic architectural shapes out …
This hands-on activity shows you how to build basic architectural shapes out of toothpicks and gumdrops. Learners explore how different shapes are more stable than others, and are introduced to ideas about "stretching and squashing"--that is, about tension and compression.
This is an activity about a very important ingredient in most baked …
This is an activity about a very important ingredient in most baked goods - gluten! Why is gluten so important? Without it, there would be nothing to hold the gas that makes bread rise. Learners will experiment with different types of flour to get a feel for gluten, and discover why using different flours can lead to such different results in the kitchen.
In this classic hands-on activity, learners estimate the length of a molecule …
In this classic hands-on activity, learners estimate the length of a molecule by floating a fatty acid (oleic acid) on water. This lab asks learners to record measurements and make calculations related to volume, diameter, area, and height. Learners also convert meters into nanometers. Includes teacher and student worksheets but lacks in depth procedure information. The author suggests educators search the web for more complete lab instructions.
In this activity, learners will explore globes of frozen water to learn …
In this activity, learners will explore globes of frozen water to learn how to ask and then answer 'investigable' questions. The activity includes four short online videos: Introduction, Step-by-Step Demonstration, Going Deeper, and What's Going On. Also available are a concept map and a "Going Further" web page that suggests variations and extensions on this activity.
In this activity, learners investigate the speed of chemical reactions with light …
In this activity, learners investigate the speed of chemical reactions with light sticks. Learners discover that reactions can be sped up or slowed down due to temperature changes.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.