This course examines the chemical and physical properties of the cell and …
This course examines the chemical and physical properties of the cell and its building blocks, with special emphasis on the structures of proteins and principles of catalysis, as well as the chemistry of organic / inorganic cofactors required for chemical transformations within the cell. Topics encompass the basic principles of metabolism and regulation in pathways, including glycolysis, gluconeogenesis, fatty acid synthesis / degradation, pentose phosphate pathway, Krebs cycle and oxidative phosphorylation.
Course Format This OCW Scholar course, designed for independent study, is closely modeled on the course taught on the MIT campus. The on-campus course has two types of class sessions: Lectures and recitations. The lectures meet three times each week and recitations meet once a week. In recitations, an instructor or Teaching Assistant elaborates on concepts presented in lecture, working through new examples with student participation, and answers questions. MIT students who take the corresponding residential class typically report an average of 10–15 hours spent each week, including lectures, recitations, readings, homework, and exams. All students are encouraged to supplement the textbooks and readings with their own research. The Scholar course has three major learning units, called Modules. Each module has been divided into a sequence of lecture sessions that include:
Textbook Readings Lecture Notes or Storyboards A video by Professor JoAnne Stubbe or Professor John Essigmann Problem Sets and solutions
To help guide your learning, each of these problem sets are accompanied by Problem Solving Videos where Dr. Bogdan Fedeles solves one of the problems from the set.
"Fluid-Solid Heterogeneous Reaction Kinetics" is an essential educational resource designed to provide …
"Fluid-Solid Heterogeneous Reaction Kinetics" is an essential educational resource designed to provide students with a comprehensive understanding of reaction dynamics in solid-gas systems. This unit comprises two insightful lessons focusing on heterogeneous catalysis and the Shrinking Core Model. Through detailed exploration of reaction mechanisms, rate-determining processes, and model analysis, students gain invaluable insights into optimizing reaction conditions and enhancing catalytic efficiency. By studying fluid-particle kinetics and reaction models, learners develop critical thinking skills essential for tackling challenges in chemical engineering and industrial catalysis, paving the way for advancements in reaction engineering and sustainable process development.
This course covers fundamentals of thermodynamics, chemistry, and transport applied to energy …
This course covers fundamentals of thermodynamics, chemistry, and transport applied to energy systems. Topics include analysis of energy conversion and storage in thermal, mechanical, chemical, and electrochemical processes in power and transportation systems, with emphasis on efficiency, performance, and environmental impact. Applications include fuel reforming and alternative fuels, hydrogen, fuel cells and batteries, combustion, catalysis, combined and hybrid power cycles using fossil, nuclear and renewable resources.
This course, which spans a third of a semester, provides students with …
This course, which spans a third of a semester, provides students with experience using techniques employed in synthetic organic chemistry. It also introduces them to the exciting research area of catalytic chiral catalysis. This class is part of the new laboratory curriculum in the MIT Department of Chemistry. Undergraduate Research-Inspired Experimental Chemistry Alternatives (URIECA) introduces students to cutting edge research topics in a modular format.
This course provides an introduction to the chemistry of biological, inorganic, and …
This course provides an introduction to the chemistry of biological, inorganic, and organic molecules. The emphasis is on basic principles of atomic and molecular electronic structure, thermodynamics, acid-base and redox equilibria, chemical kinetics, and catalysis. One year of high school chemistry is the expected background for this freshman-level course. The aims include developing a unified and intuitive view of how electronic structure controls the three-dimensional shape of molecules, the physical and chemical properties of molecules in gases, liquids and solids, and ultimately the assembly of macromolecules as in polymers and DNA. Relationships between chemistry and other fundamental sciences such as biology and physics are emphasized, as are the relationships between the science of chemistry to its applications in environmental science, atmospheric chemistry and electronic devices.
Acknowledgements Professor Drennan would like to acknowledge the contributions of MIT Lecturer Dr. Elizabeth Vogel Taylor, Professor Sylvia Ceyer, and Professor Robert Silbey to the development of this course and its materials.
5.112 is an introductory chemistry course for students with an unusually strong …
5.112 is an introductory chemistry course for students with an unusually strong background in chemistry. Knowledge of calculus equivalent to MIT course 18.01 is recommended. Emphasis is on basic principles of atomic and molecular electronic structure, thermodynamics, acid-base and redox equilibria, chemical kinetics, and catalysis. The course also covers applications of basic principles to problems in metal coordination chemistry, organic chemistry, and biological chemistry.
This course provides an introduction to the chemistry of biological, inorganic, and …
This course provides an introduction to the chemistry of biological, inorganic, and organic molecules. The emphasis is on basic principles of atomic and molecular electronic structure, thermodynamics, acid-base and redox equilibria, chemical kinetics, and catalysis. In an effort to illuminate connections between chemistry and biology, a list of the biology-, medicine-, and MIT research-related examples used in 5.111 is provided in Biology-Related Examples. Acknowledgements Development and implementation of the biology-related materials in this course were funded through an HHMI Professors grant to Prof. Catherine L. Drennan. Videos and captioning were made possible and supported by the MIT Class of 2009.
This subject deals primarily with equilibrium properties of macroscopic systems, basic thermodynamics, …
This subject deals primarily with equilibrium properties of macroscopic systems, basic thermodynamics, chemical equilibrium of reactions in gas and solution phase, and rates of chemical reactions. Acknowledgements The material for 5.60 has evolved over a period of many years, and therefore several faculty members have contributed to the development of the course contents. The following are known to have assisted in preparing the lecture notes available on OpenCourseWare: Emeritus Professors of Chemistry: Robert A. Alberty, Carl W. Garland, Irwin Oppenheim, John S. Waugh. Professors of Chemistry: Moungi Bawendi, John M. Deutch, Robert W. Field, Robert G. Griffin, Keith A. Nelson, Robert J. Silbey, Jeffrey I. Steinfeld. Professor of Bioengineering and Computer Science: Bruce Tidor. Professor of Chemistry, Rice University: James L. Kinsey. Professor of Physics, University of Illinois: Philip W. Phillips.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.