Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
By the end of this section, you will be able to:Describe how …
By the end of this section, you will be able to:Describe how changes to gene expression can cause cancerExplain how changes to gene expression at different levels can disrupt the cell cycleDiscuss how understanding regulation of gene expression can lead to better drug design
By the end of this section, you will be able to:Explain the …
By the end of this section, you will be able to:Explain the process of epigenetic regulationDescribe how access to DNA is controlled by histone modification
By the end of this section, you will be able to:Understand RNA …
By the end of this section, you will be able to:Understand RNA splicing and explain its role in regulating gene expressionDescribe the importance of RNA stability in gene regulation
By the end of this section, you will be able to:Discuss the …
By the end of this section, you will be able to:Discuss the role of transcription factors in gene regulationExplain how enhancers and repressors regulate gene expression
By the end of this section, you will be able to:Understand the …
By the end of this section, you will be able to:Understand the process of translation and discuss its key factorsDescribe how the initiation complex controls translationExplain the different ways in which the post-translational control of gene expression takes place
By the end of this section, you will be able to:Describe the …
By the end of this section, you will be able to:Describe the steps involved in prokaryotic gene regulationExplain the roles of activators, inducers, and repressors in gene regulation
By the end of this section, you will be able to:Discuss why …
By the end of this section, you will be able to:Discuss why every cell does not express all of its genesDescribe how prokaryotic gene regulation occurs at the transcriptional levelDiscuss how eukaryotic gene regulation occurs at the epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels
Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
By the end of this section, you will be able to:Describe how …
By the end of this section, you will be able to:Describe how signaling pathways direct protein expression, cellular metabolism, and cell growthIdentify the function of PKC in signal transduction pathwaysRecognize the role of apoptosis in the development and maintenance of a healthy organism
This outline was created for use with my online Fundamentals of Biology …
This outline was created for use with my online Fundamentals of Biology course at West Hills College, Lemoore, CA. It is intended to accompany Concepts of Biology by Open Stax.
Cloning is an amazing technology that allows us to make exact copies …
Cloning is an amazing technology that allows us to make exact copies of living organisms. From duplicating organs to designer babies, the possibilities are endless; however, there are numerous drawbacks to cloning creatures. In this lesson you will explore how cloning works and identify your core values and feelings on the concepts. And finally, you will produce a presentation that outlines the benefits and drawbacks of this technology.StandardsBIO.B.2.4Explain how genetic engineering has impacted the fields of medicine, forensics, and agriculture (e.g., selective breeding, gene splicing, cloning, genetically modified organisms, gene therapy).
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Cancer cells are abnormal cells that rapidly proliferate and often find ways to evade the immune system’s attempts to stop them. Such cells often overexpress the genes MYC and ARF6 and have a mutated version of the KRAS gene. These changes are inextricably linked and result in significant resistance to cancer therapies. KRAS activates MYC gene expression and possibly promotes the translation of the messenger RNA for both MYC and ARF6. Then MYC induces expression of genes related to mitochondrial formation and energy production. Meanwhile, ARF6 protects the mitochondria from oxidation-induced injury. ARF6 may also promote cancer invasion, metastasis, and immune evasion. Thus, KRAS, MYC, and ARF6 cooperate to help cancer spread and to avoid the immune system and immune-based treatments. These harmful associations are common in pancreatic cancer and can be strengthened by mutations in other genes like TP53..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Ruminants’ ability to break down human-inedible plant fibers stems from the microbes in their rumen. This process is primarily driven by microbes that can ferment plant fibers into volatile fatty acids (VFAs), followed by the rumen epithelial layer absorbing and partially metabolizing these VFAs. Recently, researchers examined how microbes and epithelial cells interact and contribute to VFA metabolism in lactating dairy cows. Metagenomic binning allowed researchers to categorize and examine the metabolic capacity of even uncultivated microbes and identify bacterial genomes with both cellulose/xylan/pectin degradation capabilities and associations with VFA biosynthesis. They then used gene expression data to construct a single-cell map of the rumen epithelial cell subtypes. Searching gene expression profiles for VFA transporters highlighted key epithelial cell subtypes. Leveraging this data highlighted interactions where microbes potentially influenced the gene expression of host epithelial cells..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.