Cerner les concepts et technologies standards des SOA ;Opérer un découpage fonctionnel des …
Cerner les concepts et technologies standards des SOA ;Opérer un découpage fonctionnel des applications ;Indiquer l’accostage en Urbanisation et SOA ;Distinguer les méthodes d’analyse SOA ;Tester la mise en œuvre SOA via des outils appropriés.
In this activity, learners observe as soap bubbles float on a cushion …
In this activity, learners observe as soap bubbles float on a cushion of carbon dioxide gas. Learners blow bubbles into an aquarium filled with a slab of dry ice. Learners will be amazed as the bubbles hover on the denser layer of carbon dioxide gas, then begin to expand and sink before freezing on the dry ice. Use this activity to discuss sublimation, density, and osmosis as well as principles of buoyancy, semipermeability, and interference.
In this lesson, the students look at the components of cells and …
In this lesson, the students look at the components of cells and their functions. The lesson focuses on the difference between prokaryotic and eukaryotic cells. Each part of the cell performs a specific function that is vital for the cell's survival. Bacteria are single-celled organisms that are very important to engineers. Engineers can use bacteria to break down toxic materials in a process called bioremediation, and they can also kill or disable harmful bacteria through disinfection.
Every cell in your body needs to take in nutrients, oxygen, and …
Every cell in your body needs to take in nutrients, oxygen, and raw materials and export wastes and other substances—but it’s not just a random traffic jam! A cell membrane (also called a plasma membrane) regulates what comes in and what goes out. Explore the properties of soap films and relate them to the properties of plasma membranes and the mechanics of transport across membranes.
Students see how surface tension can enable light objects (paper clips, peppercorns) …
Students see how surface tension can enable light objects (paper clips, peppercorns) to float on an island of oil in water, and subsequently sink when the surface tension of the oil/water interface is reduced by the addition of a surfactant; such as ordinary dish soap.
The activity described herein can be implemented in introductory chemistry and high …
The activity described herein can be implemented in introductory chemistry and high school chemistry courses. The main goal of the project is to integrate a ubiquitous biodiesel production with experiential learning by providing a community-based project. The students work in groups, research the benefits of using biodiesel over petroleum-based diesel, collect waste cooking oil from home or restaurants, develop simple and cost-effective methods to produce biodiesel, as well as making soap.
This activity is an easy way to demonstrate the fundamental properties of …
This activity is an easy way to demonstrate the fundamental properties of polar and non-polar molecules (such as water and oil), how they interact, and the affect surfactants (such as soap) have on their interactions. Students see the behavior of oil and water when placed together, and the importance soap (a surfactant) plays in the mixing of oil and water which is why soap is used every day to clean greasy objects, such as hands and dishes. This activity is recommended for all levels of student, grades 3-12, as it can easily be scaled to meet any desired level of difficulty.
In a very hands-on activity, students observe and feel the differences between …
In a very hands-on activity, students observe and feel the differences between two cleaning methods, with and without hand soap, using coffee grounds to represent "dirt."Most of the dirt and bacteria on our hands is encased in a thin layer of oil, so because of the properties of oil and water, cleaning your hands with water alone has little effect when trying to remove the dirt. This activity demonstrates the importance of using a surfactant, such as hand soap, when washing your hands.
Student teams are challenged to evaluate the design of several liquid soaps …
Student teams are challenged to evaluate the design of several liquid soaps to answer the question, “Which soap is the best?” Through two simple teacher class demonstrations and the activity investigation, students learn about surface tension and how it is measured, the properties of surfactants (soaps), and how surfactants change the surface properties of liquids. As they evaluate the engineering design of real-world products (different liquid dish washing soap brands), students see the range of design constraints such as cost, reliability, effectiveness and environmental impact. By investigating the critical micelle concentration of various soaps, students determine which requires less volume to be an effective cleaning agent, factors related to both the cost and environmental impact of the surfactant. By investigating the minimum surface tension of the soap, students determine which dissolves dirt and oil most effectively and thus cleans with the least effort. Students evaluate these competing criteria and make their own determination as to which of five liquid soaps make the “best” soap, giving their own evidence and scientific reasoning. They make the connection between gathered data and the real-world experience in using these liquid soaps.
Remove a problem species and make a natural soap! Lindsay Hollister, JPPM's …
Remove a problem species and make a natural soap! Lindsay Hollister, JPPM's horticulturalist, shares how to identify the invasive English Ivy vine and make a soap from the saponins it naturally produces. These molecules naturally deter predators from eating the species, but their structures also make them bond to both waters and fats. Consider using the video or conducting the activity at your location as an integrated introduction to learning about biodiversity and the structures of molecules or atoms, since saponins are valuable as a soap because they are able to bond with either water or fats/lipids.
Always be sure you can successfully identify a plant before using it and take precautions to avoid negative reactions.
This resource is part of Jefferson Patterson Park and Museum’s open educational resources project to provide history, ecology, archaeology, and conservation resources related to our 560 acre public park. JPPM is a part of the Maryland Historical Trust under the Maryland Department of Planning. If you evaluate or use this resource, please respond to this short (4 question!) survey at bit.ly/3GrTjPk
Students learn about the properties of solutions—such as ion interactions, surface tension …
Students learn about the properties of solutions—such as ion interactions, surface tension and viscosity—as they make their own soap and shampoo and then compare their properties. Working as if they are chemical engineers, they explore and compare how the two surfactants behave in tap water, as well as classroom-prepared acidic water, hard water and seawater using four tests: a “shake test” (assessing the amount of bubbles produced), a surface tension test, a viscosity test, and a pH test. Then they coalesce their findings into a recommendation for how to engineer the best soap versus shampoo. The activity may be shortened by using purchased liquid soap and shampoo from which students proceed to conduct the four tests. A lab worksheet and post-quiz are provided.
To experience the three types of material stress related to rocks â …
To experience the three types of material stress related to rocks â tensional, compressional and shear â students break bars of soap using only their hands. They apply force created by the muscles in their own hands to put pressure on the soap, a model for the larger scale, real-world phenomena that forms, shapes and moves the rocks of our planet. They also learn the real-life implications of understanding stress in rocks, both for predicting natural hazards and building safe structures.
Students culture cells in order to find out which type of surfactant …
Students culture cells in order to find out which type of surfactant (in this case, soap) is best at removing bacteria. Groups culture cells from unwashed hands and add regular bar soap, regular liquid soap, anti-bacterial soap, dishwasher soap, and hand sanitizer to the cultures. The cultures are allowed to grow for two days and then the students assess which type of soap design did the best job of removing bacteria cells from unwashed hands. Students extend their knowledge of engineering and surfactants for different environmental applications.
Students learn about the basics of molecules and how they interact with …
Students learn about the basics of molecules and how they interact with each other. They learn about the idea of polar and non-polar molecules and how they act with other fluids and surfaces. Students acquire a conceptual understanding of surfactant molecules and how they work on a molecular level. They also learn of the importance of surfactants, such as soaps, and their use in everyday life. Through associated activities, students explore how surfactant molecules are able to bring together two substances that typically do not mix, such as oil and water. This lesson and its associated activities are easily scalable for grades 3-12.
This reusable learning object (RLO) provides an overview of the Web Services, …
This reusable learning object (RLO) provides an overview of the Web Services, its historical background, its architectural components, and describes the two types of web services: SOAP and RESTful.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.