Updating search results...

Search Resources

16 Results

View
Selected filters:
  • spectroscopy
Air Pollution in the Pacific Northwest
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to measuring and identifying sources of air pollution, as well as how environmental engineers try to control and limit the amount of air pollution. In Part 1, students are introduced to nitrogen dioxide as an air pollutant and how it is quantified. Major sources are identified, using EPA bar graphs. Students identify major cities and determine their latitudes and longitudes. They estimate NO2 values from color maps showing monthly NO2 averages from two sources: a NASA satellite and the WSU forecast model AIRPACT. In Part 2, students continue to estimate NO2 values from color maps and use Excel to calculate differences and ratios to determine the model's performance. They gain experience working with very large numbers written in scientific notation, as well as spreadsheet application capabilities.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Farren Herron-Thorpe
Date Added:
09/18/2014
Building a Fancy Spectrograph
Read the Fine Print
Educational Use
Rating
0.0 stars

Students create and decorate their own spectrographs using simple materials and holographic diffraction gratings. A holographic diffraction grating acts like a prism, showing the visual components of light. After building the spectrographs, students observe the spectra of different light sources as homework.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Color and Spectrum
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

This demonstration shows that similar-appearing lights can be distinctly different, suggesting that the light emitted is generated in different ways. It requires some advance preparation/setup by the teacher and three recommended sources of orange light, that can be purchased at a hardware or department store. Includes extensions and additional background information on light generation in a section on underlying principles. This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications.

Subject:
Geoscience
Physical Science
Physics
Space Science
Material Type:
Simulation
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Designing a Spectroscopy Mission
Read the Fine Print
Educational Use
Rating
0.0 stars

Students find and calculate the angle that light is transmitted through a holographic diffraction grating using trigonometry. After finding this angle, student teams design and build their own spectrographs, researching and designing a ground- or space-based mission using their creation. At project end, teams present their findings to the class, as if they were making an engineering conference presentation. Student must have completed the associated Building a Fancy Spectrograph activity before attempting this activity.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Emission spectrum of hydrogen
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Using Balmer-Rydberg equation to solve for photon energy for n=3 to 2 transition. Solving for wavelength of a line in UV region of hydrogen emission spectrum. Created by Jay.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Association of American Medical Colleges
Author:
James Luer
Date Added:
06/23/2014
Foothill College AstroSims
Unrestricted Use
CC BY
Rating
0.0 stars

The Foothill College AstroSims project is ensuring continued access to astro-education simulations past the deprecation of Java and Flash. This site includes:

* re-implementations in HTML5/Javascript of existing astro-education simulations,
* new simulations of previously unaddressed topics, and
* a frequently updated list of astro-education simulations.

Subject:
Astronomy
Physical Science
Material Type:
Activity/Lab
Interactive
Simulation
Author:
Andrew Tran
Baba Kofi Weusijana
Chris Achenbach
Geoffrey Mathews
Safi Mohammed
Date Added:
07/07/2020
Freshman Organic Chemistry II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a continuation of Freshman Organic Chemistry I (CHEM 125a), the introductory course on current theories of structure and mechanism in organic chemistry for students with excellent preparation in chemistry and physics. This semester treats simple and complex reaction mechanisms, spectroscopy, organic synthesis, and some molecules of nature.

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider:
Yale University
Provider Set:
Open Yale Courses
Author:
J. Michael McBride
Date Added:
04/30/2012
General Chemistry I
Unrestricted Use
CC BY
Rating
0.0 stars

This survey chemistry course is designed to introduce students to the world of chemistry. In this course, we will study chemistry from the ground up, learning the basics of the atom and its behavior. We will apply this knowledge to understand the chemical properties of matter and the changes and reactions that take place in all types of matter. Upon successful completion of this course, students will be able to: Define the general term 'chemistry.' Distinguish between the physical and chemical properties of matter. Distinguish between mixtures and pure substances. Describe the arrangement of the periodic table. Perform mathematical operations involving significant figures. Convert measurements into scientific notation. Explain the law of conservation of mass, the law of definite composition, and the law of multiple proportions. Summarize the essential points of Dalton's atomic theory. Define the term 'atom.' Describe electron configurations. Draw Lewis structures for molecules. Name ionic and covalent compounds using the rules for nomenclature of inorganic compounds. Explain the relationship between enthalpy change and a reaction's tendency to occur. (Chemistry 101; See also: Biology 105. Mechanical Engineering 004)

Subject:
Chemistry
Physical Science
Material Type:
Assessment
Full Course
Homework/Assignment
Lecture
Lecture Notes
Reading
Syllabus
Textbook
Provider:
The Saylor Foundation
Date Added:
11/16/2011
Multiwavelength Astronomy: Gamma Ray Science
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

Dieter Hartmann, a high-energy physicist, presents a story-based lesson on the science of Gamma-Ray astronomy. The lesson focuses on gamma-ray bursts; examining their sources, types, and links to the origin and evolution of the Universe. The story-based format of the lesson also provides insights into the nature of science. Students answer questions based on the reading guide. A list of supplemental websites is also included.

Subject:
History
History, Law, Politics
Physical Science
Physics
Space Science
Material Type:
Lesson Plan
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Physical Chemistry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Physical Chemistry is the application of physical principles and measurements to understand the properties of matter, as well as for the development of new technologies for the environment, energy and medicine. Advanced Physical Chemistry topics include different spectroscopic methods (Raman, ultrafast and mass spectroscopy, nuclear magnetic and electron paramagnetic resonance, x-ray absorption and atomic force microscopy) as well as theoretical and computational tools to provide atomic-level understanding for applications such as: nanodevices for bio-detection and receptors, interfacial chemistry of catalysis and implants, electron and proton transfer, protein function, photosynthesis and airborne particles in the atmosphere.

Subject:
Chemistry
Physical Science
Material Type:
Textbook
Provider:
LibreTexts
Date Added:
05/12/2016
A Spectral Mystery
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use the spectrographs from the "Building a Fancy Spectrograph" activity to gather data about light sources. Using their data, they make comparisons between different light sources and make conjectures about the composition of a mystery light source.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Spectrophotometry, Spectroscopy, and Protein Determinations
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

We are all well aware of the composition of the world -atoms form molecules, compound become more complex, and the organization of these atoms into materials with unique structures is what brings about life. As scientists though, we must study these substances , which presents a challenge. How do we study something so incredibly small? One of the simplest methods is spectrophotometry. Different molecules will interact with light in different ways. By studying this, we can quantitatively say both how much light a compound absorbs as well as what kind of light. Certain functional groups tend to absorb light at certain wavelengths, giving "peaks" to the spectrum of light absorption. This lab demonstrates basic principles of absorbance, measured using spectrophotometers.

Material Type:
Activity/Lab
Date Added:
01/28/2016
Studying the Aurora australis from Antarctica
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This article describes early studies of the auroras, including techniques used from 1960 when Henry Brecher first spent the winter at Byrd Station in Antarctica.

Subject:
Applied Science
Environmental Science
Physical Science
Space Science
Material Type:
Reading
Provider:
Ohio State University College of Education and Human Ecology
Provider Set:
Beyond Penguins and Polar Bears: An Online Magazine for K-5 Teachers
Author:
Carol Landis
Date Added:
10/17/2014
UV VISIBLE SPECTROSCOPY
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Ultraviolet-visible spectroscopy or ultraviolet-visible spectrophotometry (UV-Vis or UV/Vis) refers to absorption spectroscopy or reflectance spectroscopy in the ultraviolet-visible spectral region. Ultraviolet-visible (UV-VIS) spectroscopy is an analytical method that can measure the analyte quantity depending on the amount of light received by the analyte.

Subject:
Physics
Material Type:
Lecture Notes
Student Guide
Author:
DEVOTINE M
Date Added:
04/02/2023
Using Spectral Data to Explore Saturn and Titan
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use authentic spectral data from the Cassini mission of Saturn and Saturn's moon, Titan, gathered by instrumentation developed by engineers. Taking these unknown data, and comparing it with known data, students determine the chemical composition of Saturn's rings and Titan's atmosphere.

Subject:
Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Using a Fancy Spectrograph
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use the spectrograph from the "Building a Fancy Spectrograph" activity to gather data about different light sources. Using the data, they make comparisons between the light sources and make conjectures about the composition of these sources.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Gill
Date Added:
10/14/2015