This is a task from the Illustrative Mathematics website that is one …

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: This task examines the mathematics behind an origami construction of a rectangle whose sides have the ratio $(\sqrt{2}:1)$. Such a rectangle is called ...

An interactive applet and associated web page that introduce the concept of …

An interactive applet and associated web page that introduce the concept of an angle. An angle made from two line segments is shown that the user can adjust by dragging the end points of the segments. In real time, as the angles is changed by the user, the angle measure in degrees is shown and a message telling what type of angle it currently is: acute, right, obtuse, reflex or straight. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.

This task provides a construction of the angle bisector of an angle …

This task provides a construction of the angle bisector of an angle by reducing it to the bisection of an angle to finding the midpoint of a line segment. It is worth observing the symmetry -- for both finding midpoints and bisecting angles, the goal is to cut an object into two equal parts. The conclusion of this task is that they are, in a sense, of exactly equivalent difficulty -- bisecting a segment allows us to bisect and angle (part a) and, conversely, bisecting an angle allows us to bisect a segment (part b). In addition to seeing how these two constructions are related, the task also provides an opportunity for students to use two different triangle congruence criteria: SSS and SAS.

An interactive applet and associated web page that demonstrate the bisector of …

An interactive applet and associated web page that demonstrate the bisector of an angle. An angle is shown using two line segments that can be dragged to change the angle measure. The angle is bisected by a line which moves while dragging to always divide the angle into two equal angles. The angle measures can be turned off for class discussions. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.

An interactive applet and associated web page that provide step-by-step instructions on …

An interactive applet and associated web page that provide step-by-step instructions on how to bisect an angle using only a compass and straightedge. The animation can be run either continuously like a video, or single stepped to allow classroom discussion and thought between steps. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.

An interactive applet and associated web page that provide step-by-step animated instructions …

An interactive applet and associated web page that provide step-by-step animated instructions on how to construct a line parallel to a given line through a given point off the line. The animation can be run either continuously like a video, or single stepped to allow classroom discussion and thought between steps. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.

The construction of the perpendicular bisector of a line segment is one …

The construction of the perpendicular bisector of a line segment is one of the most common in plane geometry and it is undertaken here. In addition to giving students a chance to work with straightedge and compass, the problem uses triangle congruence both to show that the constructed line is perpendicular to AB and to show that it bisects AB.

An interactive applet and associated web page that provide step-by-step instructions on …

An interactive applet and associated web page that provide step-by-step instructions on how to copy a line segment using only a compass and straightedge. The animation can be run either continuously like a video, or single stepped to allow classroom discussion and thought between steps. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.

An interactive applet and associated web page that provide step-by-step instructions on …

An interactive applet and associated web page that provide step-by-step instructions on how to divide a line segment into any number of equal parts, using only a compass and straightedge. The applet starts with a given line segment and ends with that segment divided into n parts. In the applet n=5, but the construction works for any n. The animation can be run either continuously like a video, or single stepped to allow classroom discussion and thought between steps. The text on the page has printable step-by-step instructions. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.

The football team's bench fell apart at the game. We need to …

The football team's bench fell apart at the game. We need to design and build a prototype for a new bench using the properties of congruent triangles and/or parallel lines.

This is a task from the Illustrative Mathematics website that is one …

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Jessica is working to construct an equilateral triangle with origami paper and uses the following steps. First she folds the paper in half and then unf...

This is a task from the Illustrative Mathematics website that is one …

This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Lisa makes an octagon by successively folding a square piece of paper as follows. First, she folds the square in half vertically and horizontally and a...

Students design their own logo or picture and use a handheld GPS …

Students design their own logo or picture and use a handheld GPS receiver to map it out. They write out a word or graphic on a field or playground, walk the path, and log GPS data. The results display their "art" on their GPS receiver screen.

Students learn about common geometry tools and then learn to use protractors …

Students learn about common geometry tools and then learn to use protractors (and Miras, if available) to create and measure angles and reflections. The lesson begins with a recap of the history and modern-day use of protractors, compasses and mirrors. After seeing some class practice problems and completing a set of worksheet-prompted problems, students share their methods and work. Through the lesson, students gain an awareness of the pervasive use of angles, and these tools, for design purposes related to engineering and everyday uses. This lesson prepares students to conduct the associated activity in which they “solve the holes” for hole-in-one multiple-banked angle solutions, make their own one-hole mini-golf courses with their own geometry-based problems and solutions, and then compare their “on paper” solutions to real-world results.

An interactive applet and associated web page that demonstrate a bisector of …

An interactive applet and associated web page that demonstrate a bisector of a line segment. The applet shows a fixed line segment and another line that bisects it. The second line's endpoints can be dragged, but the line adjusts itself so that it always bisects the fixed line. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.

This task can be implemented in a variety of ways. For a …

This task can be implemented in a variety of ways. For a class with previous exposure to the incenter or angle bisectors, part (a) could be a quick exercise in geometric constructions,. Alternatively, this could be part of a full introduction to angle bisectors, culminating in a full proof that the three angle bisectors are concurrent, an essentially complete proof of which is found in the solution below.

(Nota: Esta es una traducción de un recurso educativo abierto creado por …

(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)

El módulo 1 incorpora cambios críticos en la geometría según lo descrito por el núcleo común. El corazón del módulo es el estudio de las transformaciones y el papel que juegan las transformaciones para definir la congruencia. El tema de las transformaciones se introduce de manera principalmente experiencial en el grado 8 y se formaliza en el grado 10 con el uso de un lenguaje preciso. La necesidad de un uso claro del lenguaje se enfatiza a través del vocabulario, el proceso de escribir pasos para realizar construcciones y, en última instancia, como parte del proceso de escritura de prueba.

Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.

English Description: Module 1 embodies critical changes in Geometry as outlined by the Common Core. The heart of the module is the study of transformations and the role transformations play in defining congruence. The topic of transformations is introduced in a primarily experiential manner in Grade 8 and is formalized in Grade 10 with the use of precise language. The need for clear use of language is emphasized through vocabulary, the process of writing steps to perform constructions, and ultimately as part of the proof-writing process.

Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.

Celestial navigation is the art and science of finding one's geographic position …

Celestial navigation is the art and science of finding one's geographic position by means of astronomical observations, particularly by measuring altitudes of celestial objects sun, moon, planets or stars. This activity starts with a basic, but very important and useful, celestial measurement: measuring the altitude of Polaris (the North Star) or measuring the latitude.

The intent of clarifying statements is to provide additional guidance for educators …

The intent of clarifying statements is to provide additional guidance for educators to communicate the intent of the standard to support the future development of curricular resources and assessments aligned to the 2021 math standards. Clarifying statements can be in the form of succinct sentences or paragraphs that attend to one of four types of clarifications: (1) Student Experiences; (2) Examples; (3) Boundaries; and (4) Connection to Math Practices.

No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.

Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.

Your redistributing comes with some restrictions. Do not remix or make derivative works.

Most restrictive license type. Prohibits most uses, sharing, and any changes.

Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.