Updating search results...

Search Resources

58 Results

View
Selected filters:
  • WY.SCI.MS.PS3.5 - Construct, use, and present arguments to support the claim that when t...
  • WY.SCI.MS.PS3.5 - Construct, use, and present arguments to support the claim that when t...
6.2 Thermal Energy
Unrestricted Use
CC BY
Rating
0.0 stars

This unit on thermal energy transfer begins with students testing whether a new plastic cup sold by a store keeps a drink colder for longer than the regular plastic cup that comes free with the drink.

Through a series of lab investigations and simulations, students find two ways to transfer energy into the drink: (1) the absorption of light and (2) thermal energy from the warmer air around the drink. They are then challenged to design their own drink container that can perform as well as the store-bought container, following a set of design criteria and constraints.

Subject:
Physical Science
Material Type:
Lesson
Lesson Plan
Unit of Study
Provider:
OpenSciEd
Author:
OpenSciEd
Date Added:
08/02/2021
6.2 Thermal Energy
Unrestricted Use
CC BY
Rating
0.0 stars

Unit Summary
This unit on thermal energy transfer begins with students testing whether a new plastic cup sold by a store keeps a drink colder for longer compared to the regular plastic cup that comes free with the drink. Students find that the drink in the regular cup warms up more than the drink in the special cup. This prompts students to identify features of the cups that are different, such as the lid, walls, and hole for the straw, that might explain why one drink warms up more than the other. 
Students investigate the different cup features they conjecture are important to explaining the phenomenon, starting with the lid. They model how matter can enter or exit the cup via evaporation However, they find that in a completely closed system, the liquid inside the cup still changes temperature. This motivates the need to trace the transfer of energy into the drink as it warms up. Through a series of lab investigations and simulations, students find that there are two ways to transfer energy into the drink: (1) the absorption of light and (2) thermal energy from the warmer air around the drink. They are then challenged to design their own drink container that can perform as well as the store-bought container, following a set of design criteria and constraints.
This unit builds toward the following NGSS Performance Expectations (PEs) as described in the OpenSciEd Scope & Sequence: MS-PS1-4*, MS-PS3-3, MS-PS3-4, MS-PS3-5, MS-PS4-2*, MS-ETS1-4. The OpenSciEd units are designed for hands-on learning and therefore materials are necessary to teach the unit. These materials can be purchased as science kits or assembled using the kit material list.

Subject:
Physical Science
Material Type:
Activity/Lab
Lesson
Module
Provider:
OpenSciEd
Date Added:
09/10/2019
Building Roller Coasters
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build their own small-scale model roller coasters using pipe insulation and marbles, and then analyze them using physics principles learned in the associated lesson. They examine conversions between kinetic and potential energy and frictional effects to design roller coasters that are completely driven by gravity. A class competition using different marbles types to represent different passenger loads determines the most innovative and successful roller coasters.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Scott Liddle
Date Added:
10/14/2015
Building a Piezoelectric Generator
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how to build simple piezoelectric generators to power LEDs. To do this, they incorporate into a circuit a piezoelectric element that converts movements they make (mechanical energy) into electrical energy, which is stored in a capacitor (short-term battery). Once enough energy is stored, they flip a switch to light up an LED. Students also learn how much (surprisingly little) energy can be converted using the current state of technology for piezoelectric materials.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kimberly Anderson
Matthew Zelisko
Date Added:
10/14/2015
Clean Energy: Hydropower
Read the Fine Print
Educational Use
Rating
0.0 stars

Hydropower generation is introduced to students as a common purpose and benefit of constructing dams. Through an introduction to kinetic and potential energy, students come to understand how a dam creates electricity. They also learn the difference between renewable and non-renewable energy.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Kristin Field
Michael Bendewald
Sara Born
Date Added:
09/18/2014
Discovering Friction
Read the Fine Print
Educational Use
Rating
0.0 stars

With a simple demonstration activity, students are introduced to the concept of friction as a force that impedes motion when two surfaces are in contact. Then, in the Associated Activity (Sliding and Stuttering), they work in teams to use a spring scale to drag an object such as a ceramic coffee cup along a table top or the floor. The spring scale allows them to measure the frictional force that exists between the moving cup and the surface it slides on. By modifying the bottom surface of the cup, students can find out what kinds of surfaces generate more or less friction. They also discover that both static and kinetic friction are involved when an object initially at rest is caused to slide across a surface.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Efficiency of an Electromechanical System
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use LEGO® motors and generators to raise washers a measured height. They compare the work done by the motor-generator systems with the energy inputs to calculate efficiency.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Nate Barlow
Susan Powers
Date Added:
09/18/2014
Energy Basics
Read the Fine Print
Educational Use
Rating
0.0 stars

Demos and activities in this lesson are intended to illustrate the basic concepts of energy science -- work, force, energy, power etc. and the relationships among them. The "lecture" portion of the lesson includes many demonstrations to keep students engaged, yet has high expectations for the students to perform energy related calculations and convert units as required. A homework assignment and quiz are used to reinforce and assess these basic engineering science concepts.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Energy Efficiency
Read the Fine Print
Educational Use
Rating
0.0 stars

This Lesson provides two different activities that require students to measure energy outputs and inputs to determine the efficiency of conversions and simple systems. One of the activities includes Lego motors and accomplishing work. The other investigates energy for heating water. They learn about by products of energy conversions and how to improve upon efficiency. The teacher can choose to use either of these or both of these. The calculations in the water heating experiment are more complicated than in the Lego motor activity. Thus, the heating activity is suitable for older students, only the Lego motor activity suitable for younger students.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Nate Barlow
Susan Powers
Date Added:
09/18/2014
Energy-Efficient Housing
Read the Fine Print
Educational Use
Rating
0.0 stars

We all know that it takes energy to provide us with the basics of shelter: heating, cooling, lighting, electricity, sanitation and cooking. To create energy-efficient housing that is practical for people to use every day requires combining many smaller systems that each perform a function well, and making smart decisions about the sources of power we use. Through five lessons on the topics of heat transfer, circuits, daylighting, electricity from renewable energy sources, and passive solar design, students learn about the science, math and engineering that go into designing energy-efficient components of smart housing that is environmentally friendly. Through numerous design/build/analyze activities, students create a solar water heater, swamp cooler, thermostat, model houses for testing, model greenhouse, and wind and water turbine prototypes. It is best if students are concurrently taking Algebra 1 in order to complete some of the worksheets.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Energy Forms and States Demonstrations
Read the Fine Print
Educational Use
Rating
0.0 stars

Demonstrations explain the concepts of energy forms (sound, chemical, radiant [light], electrical, atomic [nuclear], mechanical, thermal [heat]) and states (potential, kinetic).

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Energy Skate Park
Unrestricted Use
CC BY
Rating
0.0 stars

Learn about conservation of energy with a skater dude! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Michael
Michael Dubson
Sam Reid
Trish Loeblein
Wendy Adams
Date Added:
10/03/2006
Energy Skate Park (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Learn about conservation of energy with a skater dude! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Michael Dubson
Patricia Loblein
Sam Reid
Wendy Adams
Date Added:
07/02/2008
Energy Skate Park: Basics
Unrestricted Use
CC BY
Rating
0.0 stars

Students will: Predict the kinetic and potential energy of objects Design a skate park Examine how kinetic and potential energy interact with each other

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Ariel Paul
Emily B Moore
Katherine Perkins
Noah Podolefsky
Sam Reid
Trish Loeblein
Date Added:
01/31/2012
Energy Transfer in Musical Instruments
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson covers concepts of energy and energy transfer utilizing energy transfer in musical instruments as an example. More specifically, the lesson explains the two different ways in which energy can be transferred between a system and its environment. The law of conservation of energy will also be taught. Example systems will be presented to students (two cars on a track and a tennis ball falling to the ground) and students will be asked to make predictions and explain the energy transfer mechanisms. The engineering focus comes in clearly in the associated activity when students are asked to apply the fundamental concepts of the lesson to design a musical instrument. The systems analyzed in the lesson should help a great deal in terms of discussing how to apply conservation of energy and energy transfer to make things.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Adam Kempton
Date Added:
09/18/2014
Exploring Energy
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about energy, kinetic energy, potential energy, and energy transfer through a series of three lessons and three activities. They learn that energy can be neither created nor destroyed and that relationships exist between a moving object's mass and velocity. The associated activities give students hands-on experience with examples of potential-to-kinetic energy transfers. The activities also provide ways for students to apply the core concepts of energy through engineering practices such as building and testing prototypes to meet design criteria, planning and carrying out investigations, collecting and interpreting data, optimizing a system design, and collaborating with other research groups. The fundamental concepts presented in this unit serve as a good foundation for future lessons on energy technologies and electricity production.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Anderson
Irene Zhao
Jeff Kessler
Date Added:
10/14/2015
Exploring Energy: Energy Conversion
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concept of energy conversion, and how energy transfers from one form, place or object to another. They learn that energy transfers can take the form of force, electricity, light, heat and sound and are never without some energy "loss" during the process. Two real-world examples of engineered systems light bulbs and cars are examined in light of the law of conservation of energy to gain an understanding of their energy conversions and inefficiencies/losses. Students' eyes are opened to the examples of energy transfer going on around them every day. Includes two simple teacher demos using a tennis ball and ball bearings. A PowerPoint(TM) presentation and quizzes are provided.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Anderson
Irene Zhao
Jeff Kessler
Date Added:
10/14/2015
Exploring Energy: Kinetic and Potential
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about kinetic and potential energy, including various types of potential energy: chemical, gravitational, elastic and thermal energy. They identify everyday examples of these energy types, as well as the mechanism of corresponding energy transfers. They learn that energy can be neither created nor destroyed and that relationships exist between a moving object's mass and velocity. Further, the concept that energy can be neither created nor destroyed is reinforced, as students see the pervasiveness of energy transfer among its many different forms. A PowerPoint(TM) presentation and post-quiz are provided.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Anderson
Irene Zhao
Jeff Kessler
Date Added:
10/14/2015
Exploring Energy: What Is Energy?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the definition of energy and the concepts of kinetic energy, potential energy, and energy transfer. This lesson is a broad overview of concepts that are taught in more detail in subsequent lessons and activities in this curricular unit. A PowerPoint(TM) presentation and pre/post quizzes are provided.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Anderson
Irene Zhao
Jeff Kessler
Date Added:
10/14/2015
Exploring Solar Power
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the methods engineers have devised for harnessing sunlight to generate power. First, they investigate heat transfer and heat storage through the construction, testing and use of a solar oven. With a lesson focused on photovoltaic cells, students learn the concepts of energy conversion, conservation of energy, current and voltage. By constructing model solar powered cars, students see these conceptual ideas manifested in modern technology. Furthermore, the solar car project provides opportunities to explore a number of other topics, such as gear ratios and simple mechanics. Both of these design and construction projects are examples of engineering design.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Lauren Powell
Date Added:
09/18/2014