Learning Domain: The Number System

Standard: Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. Explore the real number system and its appropriate usage in real-world situations.

Degree of Alignment:
Not Rated
(0 users)

Learning Domain: The Number System

Standard: Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions.

Degree of Alignment:
Not Rated
(0 users)

Learning Domain: The Number System

Standard: Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.

Degree of Alignment:
Not Rated
(0 users)

Learning Domain: The Number System

Standard: Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., ěŰ^2). For example, by truncating the decimal expansion of ‰ö_2 (square root of 2), show that ‰ö_2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.

Degree of Alignment:
Not Rated
(0 users)

Cluster: Know that there are numbers that are not rational, and approximate them by rational numbers

Standard: Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.

Degree of Alignment:
Not Rated
(0 users)

Cluster: Know that there are numbers that are not rational, and approximate them by rational numbers

Standard: Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^2). For example, by truncating the decimal expansion of √2 (square root of 2), show that √2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.

Degree of Alignment:
Not Rated
(0 users)

## Comments