## Description

- Overview:
- Students use number lines to represent products of a negative integer and a positive integer, and they use patterns to understand products of two negative integers. Students write rules for products of integers.Key ConceptsThe product of a negative integer and a positive integer can be interpreted as repeated addition. For example, 4 • (–2) = (–2) + (–2) + (–2) + (–2). On a number line, this can be represented as four arrows of length 2 in a row, starting at 0 and pointing in the negative direction. The last arrow ends at –8, indicating that 4 • (–2) = –8. In general, the product of a negative integer and a positive integer is negative.The product of two negative integers is hard to interpret or visualize. In this lesson, we use patterns to help students see why a negative integer multiplied by a negative integer equals a positive integer. For example, students can compute the products in the pattern below.4 • (–3) = –123 • (–3) = –92 • (–3) = –61 • (–3) = –30 • (–3) = 0They can observe that, as the first factor decreases by 1, the product increases by 3. They can continue this pattern to find these products.–1 • (–3) = 3–2 • (–3) = 6–3 • (–3) = 9In the next lesson, we will prove that the rules for multiplying positive and negative integers extend to all rational numbers, including fractions and decimals.Goals and Learning ObjectivesRepresent multiplication of a negative integer and a positive integer on a number line.Use patterns to understand products of two negative integers.Write rules for multiplying integers.

- Subject:
- Numbers and Operations
- Level:
- Middle School
- Grades:
- Grade 7
- Material Type:
- Lesson Plan
- Provider:
- Pearson
- Date Added:
- 09/21/2015

- License:
- Creative Commons Attribution Non-Commercial
- Language:
- English
- Media Format:
- Text/HTML

## Standards

## Evaluations

No evaluations yet.

## Comments