## Ratios and Angles

**Work Time**

# Ratios and Angles

- Draw a right triangle. Label it
*ABC*. The right angle should be at*C*. Find the ratio of the sides that include the right angle by dividing*AC*by*CB.* - Choose leg lengths for the triangle and note the ratio and angle measure. Change the size of the triangle so that it still has the same ratio (for example, if the ratio was $\frac{3}{6}$ = $0.5$ you could change it to $\frac{4}{8}$ = $0.5$. What do you notice about the angle measure?
- Choose leg lengths for the triangle and note the ratio and angle measure. Change the size of the triangle so that it still has the same angle measure. What do you notice about the ratio?
- What is the relationship between the ratio and the angle measure? In other words, how does the angle size change as the ratio changes (or how does the ratio change as the angle size changes)?
- What can you conclude about the relationship of the ratio of the leg lengths of a right triangle to the measure of angle
*B*?

HANDOUT: Ratios and Angles