The first two parts of this task ask students to interpret the …
The first two parts of this task ask students to interpret the meaning of signed numbers and reason based on that meaning in a context where the meaning of zero is already given by convention.
In this task students are asked to write two expressions from verbal …
In this task students are asked to write two expressions from verbal descriptions and determine if they are equivalent. The expressions involve both percent and fractions. This task is most appropriate for a classroom discussion since the statement of the problem has some ambiguity.
In order to solve this problem, students must assume that if you …
In order to solve this problem, students must assume that if you mix a cubic foot of sand with a cubic foot of cement, you will have 2 cubic feet of mix.
The primary purpose of this task is to elicit common misconceptions that …
The primary purpose of this task is to elicit common misconceptions that arise when students try to model situations with linear functions. This task, being multiple choice, could also serve as a quick assessment to gauge a class' understanding of modeling with linear functions.
This task asks students to solve a problem in a context involving …
This task asks students to solve a problem in a context involving constant speed. This task provides a transition from working with ratios involving whole numbers to ratios involving fractions.
This task presents a straight forward question that can be solved using …
This task presents a straight forward question that can be solved using an equation in one variable. The numbers are complicated enough so that it is natural to set up an equation rather than solve the problem in one's head.
The purpose of this task is for students to solve problems involving …
The purpose of this task is for students to solve problems involving decimals in a context involving a concept that supports financial literacy, namely inflation.
This problem uses the same numbers and asks similar mathematical questions as …
This problem uses the same numbers and asks similar mathematical questions as "6.NS The Florist Shop," but that task requires students to apply the concepts of multiples and common multiples in a context.
In this group task students collect data and analyze from the class …
In this group task students collect data and analyze from the class to answer the question "is there an association between whether a student plays a sport and whether he or she plays a musical instrument? "
In this task, students are able to conjecture about the differences and …
In this task, students are able to conjecture about the differences and similarities in the two groups from a strictly visual perspective and then support their comparisons with appropriate measures of center and variability. This will reinforce that much can be gleaned simply from visual comparison of appropriate graphs, particularly those of similar scale.
The purpose of this task is to help solidify students' understanding of …
The purpose of this task is to help solidify students' understanding of signed numbers as points on a number line and to understand the geometric interpretation of adding and subtracting signed numbers.
This task allows students to reason about the relative costs per pound …
This task allows students to reason about the relative costs per pound of the two fruits without actually knowing what the costs are. Students who find this difficult may add a scale to the graph and reason about the meanings of the ordered pairs. Comparing the two approaches in a class discussion can be a profitable way to help students make sense of slope.
The purpose of this task is to help students see that when …
The purpose of this task is to help students see that when you have a context that can be modeled with a ratio and associated unit rate, there is almost always another ratio with its associated unit rate (the only exception is when one of the quantities is zero), and to encourage students to flexibly choose either unit rate depending on the question at hand.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.