Updating search results...

Middle School Hydrology

52 affiliated resources

Search Resources

View
Selected filters:
Investigating How Terrain and Watersheds are Connected
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity students will gain an understanding of how terrain affects a watershed. Students will use maps and Google Earth to "get a picture" of the terrain within their watershed. They will use this knowledge to create an investigation of their stream which will help answer student generated questions about the connection of terrain and water systems.

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Mick Hamilton
Date Added:
08/10/2012
Investigating Local Stream Discharge
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is a field investigation where students calculate stream discharge, develop and complete an investigation involving the stream, interpret their findings, and report to their peers.

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Katie Melgaard
Date Added:
08/10/2012
Investigating River Flow: Calculating the Discharge of a Stream
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is a field investigation in which students will gather data from a stream to calculate the discharge. They will need to interpret their findings and examine what factors could change the discharge of a stream over time.

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Heidi Hilliard
Date Added:
08/10/2012
Investigating Stream Characteristics and Discharge:  An Interdisciplinary Approach
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is a interdisciplinary field investigation where students will form observations and make calculations about stream characteristics and stream flow.

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Eric Scheidel
Date Added:
08/10/2012
Just Breathe Green: Measuring Transpiration Rates
Read the Fine Print
Educational Use
Rating
0.0 stars

Through multi-trial experiments, students are able to see and measure something that is otherwise invisible to them seeing plants breathe. Student groups are given two small plants of native species and materials to enclose them after watering with colored water. After being enclosed for 5, 10 and 15 minutes, teams collect and measure the condensed water from the plants' "breathing," and then calculate the rates at which the plants breathe. A plant's breath is known as transpiration, which is the flow of water from the ground where it is taken up by roots (plant uptake) and then lost through the leaves. Students plot volume/time data for three different native plant species, determine and compare their transpiration rates to see which had the highest reaction rate and consider how a plant's unique characteristics (leaf surface area, transpiration rate) might figure into engineers' designs for neighborhood stormwater management plans.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brigith Soto
Jennifer Butler
Krysta Porteus
Maya Trotz
Ryan Locicero
William Zeman
Date Added:
09/18/2014
Locks and Dams
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the structure, function and purpose of locks and dams, which involves an introduction to Pascal's law, water pressure and gravity.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denali Lander
Denise W. Carlson
Jeff Lyng
Kristin Field
Lauren Cooper
Date Added:
09/18/2014
Measuring Discharge and Flow in the Rum River
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is a field investigation where students observe, predict, and gather data on steam velocity, erosion, and discharge.

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
sarah haberman
Date Added:
08/10/2012
Middle School Stream Investigation: Observing Stream Erosion, Calculating Stream Discharge, and Determining Stream Chemistry and Turbidity
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This stream field investigation will allow students to look at stream erosional patterns, take measurements to determine discharge, and conduct a chemical and turbidity analysis of Garvin Brook in Stockton, MN. Based on this investigation students will create a presentation that includes a new testable question that may be carried out the following year along with a stream ecology study.

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Lisa Clifford
Date Added:
08/10/2012
Moving without Wheels
Read the Fine Print
Educational Use
Rating
0.0 stars

In a class demonstration, students observe a simple water cycle model to better understand its role in pollutant transport. This activity shows one way in which pollution is affected by the water cycle; it simulates a point source of pollution in a lake and the resulting environmental consequences.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Alejandro Reiman-Moreno
Amy Kolenbrander
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Tyman Stephens
Date Added:
10/14/2015
Natural and Urban "Stormwater" Water Cycle Models
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply their understanding of the natural water cycle and the urban "stormwater" water cycle, as well as the processes involved in both cycles to hypothesize how the flow of water is affected by altering precipitation. Student groups consider different precipitation scenarios based on both intensity and duration. Once hypotheses and specific experimental steps are developed, students use both a natural water cycle model and an urban water cycle model to test their hypotheses. To conclude, students explain their results, tapping their knowledge of both cycles and the importance of using models to predict water flow in civil and environmental engineering designs. The natural water cycle model is made in advance by the teacher, using simple supplies; a minor adjustment to the model easily turns it into the urban water cycle model.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrew O'Brien
Austin Childress
Carleigh Samson
Maya Trotz
Ryan Locicero
Date Added:
09/18/2014
Natural and Urban "Stormwater" Water Cycles
Read the Fine Print
Educational Use
Rating
0.0 stars

Through an overview of the components of the hydrologic cycle and the important roles they play in the design of engineered systems, students' awareness of the world's limited fresh water resources is heightened. The hydrologic cycle affects everyone and is the single most critical component to life on Earth. Students examine in detail the water cycle components and phase transitions, and then learn how water moves through the human-made urban environment. This urban "stormwater" water cycle is influenced by the pervasive existence of impervious surfaces that limit the amount of infiltration, resulting in high levels of stormwater runoff, limited groundwater replenishment and reduced groundwater flow. Students show their understanding of the process by writing a description of the path of a water droplet through the urban water cycle, from the droplet's point of view. The lesson lays the groundwork for rest of the unit, so students can begin to think about what they might do to modify the urban "stormwater" water cycle so that it functions more like the natural water cycle. A PowerPoint® presentation and handout are provided.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brigith Soto
Jennifer Butler
Krysta Porteus
Maya Trotz
Ryan Locicero
William Zeman
Date Added:
09/18/2014
Ocean Water Desalination
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the techniques engineers have developed for changing ocean water into drinking water, including thermal and membrane desalination. They begin by reviewing the components of the natural water cycle. They see how filters, evaporation and/or condensation can be components of engineering desalination processes. They learn how processes can be viewed as systems, with unique objects, inputs, components and outputs, and sketch their own system diagrams to describe their own desalination plant designs.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Denise W. Carlson
Juan Ramirez Jr.
Stephanie Rivale
Date Added:
09/18/2014
The Other Water Cycle
Read the Fine Print
Educational Use
Rating
0.0 stars

For students that have already been introduced to the water cycle this lesson is intended as a logical follow-up. Students will learn about human impacts on the water cycle that create a pathway for pollutants beginning with urban development and joining the natural water cycle as surface runoff. The extent of surface runoff in an area depends on the permeability of the materials in the ground. Permeability is the degree to which water or other liquids are able to flow through a material. Different substances such as soil, gravel, sand, and asphalt have varying levels of permeability. In this lesson, along with the associated activities, students will learn about permeability and compare the permeability of several different materials for the purpose of engineering landscape drainage systems.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Sherry McGauvran
Usman Zaheer
Date Added:
09/18/2014
Permeable Pavement
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate how different riparian ground covers, such as grass or pavement, affect river flooding. They learn about permeable and impermeable materials through the measurement how much water is absorbed by several different household materials in a model river. Students use what they learn to make recommendations for engineers developing permeable pavement. Also, they consider several different limitations for design in the context of a small community.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Kaelin Cawley
Malinda Schaefer Zarske
Tim Nicklas
Date Added:
10/14/2015
The Physics of Fluid Mechanics
Read the Fine Print
Educational Use
Rating
0.0 stars

From drinking fountains at playgrounds, water systems in homes, and working bathrooms at schools to hydraulic bridges and levee systems, fluid mechanics are an essential part of daily life. Fluid mechanics, the study of how forces are applied to fluids, is outlined in this unit as a sequence of two lessons and three corresponding activities. The first lesson provides a basic introduction to Pascal's law, Archimedes' principle and Bernoulli's principle and presents fundamental definitions, equations and problems to solve with students, as well as engineering applications. The second lesson provides a basic introduction to above-ground storage tanks, their pervasive use in the Houston Ship Channel, and different types of storage tank failure in major storms and hurricanes. The unit concludes with students applying what they have learned to determine the stability of individual above-ground storage tanks given specific storm conditions so they can analyze their stability in changing storm conditions, followed by a project to design their own storage tanks to address the issues of uplift, displacement and buckling in storm conditions.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Protect Your Body, Filter Your Water!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students experience the steps of the engineering design process as they design solutions for a real-world problem that could affect their health. After a quick review of the treatment processes that municipal water goes through before it comes from the tap, they learn about the still-present measurable contamination of drinking water due to anthropogenic (human-made) chemicals. Substances such as prescription medication, pesticides and hormones are detected in the drinking water supplies of American and European metropolitan cities. Using chlorine as a proxy for estrogen and other drugs found in water, student groups design and test prototype devices that remove the contamination as efficiently and effectively as possible. They use plastic tubing and assorted materials such as activated carbon, cotton balls, felt and cloth to create filters with the capability to regulate water flow to optimize the cleaning effect. They use water quality test strips to assess their success and redesign for improvement. They conclude by writing comprehensive summary design reports.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeanne Hubelbank
Kristen Billiar
Terri Camesano
Timothy S. Vaillancourt
Date Added:
10/14/2015
Protecting Our City with Levees
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design and build their own model levees. Acting as engineers for their city, teams create sturdy barriers to prevent water from flooding a city in the event of a hurricane.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Brian Kay
Denise W. Carlson
Janet Yowell
Karen King
Katherine Beggs
Date Added:
10/14/2015
The Rivers that Connect Us--Stories from the Land
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity takes students through the historical and geological events that shaped the areas near the Minnesota and Mississippi river confluence.

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Ashley Riesgraf
Date Added:
08/10/2012
Salmon Use of Geomorphically Restored Streams at Point Reyes National Seashore
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Spreadsheets Across the Curriculum module/Geology of National Parks course. Students work with salmon-trace streambed data to study whether removal of a spawning run barrier was effective

Subject:
Biology
Hydrology
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Mark Rains
Date Added:
08/10/2012
Save a Life, Clean Some Water!
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams practice water quality analysis through turbidity measurement and coliform bacteria counts. They use information about water treatment processes to design prototype small-scale water treatment systems and test the influent (incoming) and effluent (outgoing) water to assess how well their prototypes produce safe water to prevent water-borne illnesses.

Subject:
Applied Science
Engineering
Hydrology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christie Chatterley
Denise W. Carlson
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014