This lab demonstrates Ohm's law as students set up simple circuits each …
This lab demonstrates Ohm's law as students set up simple circuits each composed of a battery, lamp and resistor. Students calculate the current flowing through the circuits they create by solving linear equations. After solving for the current, I, for each set resistance value, students plot the three points on a Cartesian plane and note the line that is formed. They also see the direct correlation between the amount of current flowing through the lamp and its brightness.
This lesson introduces students to the concept of air pressure. Students will …
This lesson introduces students to the concept of air pressure. Students will explore how air pressure creates force on an object. They will study the relationship between air pressure and the velocity of moving air.
When capacitors are connected one after another, they are said to be …
When capacitors are connected one after another, they are said to be in series. For capacitors in series, the total capacitance can be found by adding the reciprocals of the individual capacitances, and taking the reciprocal of the sum. Therefore, the total capacitance will be lower than the capacitance of any single capacitor in the circuit. Created by David SantoPietro.
Students are presented with a short lesson on the difference between cohesive …
Students are presented with a short lesson on the difference between cohesive forces (the forces that hold water molecules together and create surface tension) and adhesive forces (the forces that causes water to "stick" to solid surfaces. The interaction between cohesive forces and adhesive forces causes the well-known capillary action. Students are also introduced to examples of capillary action found in nature and in our day-to-day lives.
Students observe Pascal's law, Archimedes' principle and the ideal gas law as …
Students observe Pascal's law, Archimedes' principle and the ideal gas law as a Cartesian diver moves within a closed system. The Cartesian diver is neutrally buoyant and begins to sink when an external pressure is applied to the closed system. A basic explanation and proof of this process is provided in this activity, and supplementary ideas for more extensive demonstrations and independent group activities are presented.
Students observe the relationship between the angle of a catapult (a force …
Students observe the relationship between the angle of a catapult (a force measurement) and the flight of a cotton ball. They learn how Newton's second law of motion works by seeing directly that F = ma. When they pull the metal "arm" back further, thus applying a greater force to the cotton ball, it causes the cotton ball to travel faster and farther. Students also learn that objects of greater mass require more force to result in the same distance traveled by a lighter object.
A worked example finding the change in centripetal acceleration from the change …
A worked example finding the change in centripetal acceleration from the change in linear speed, and an example finding the change in centripetal acceleration from the change in radius.
A worked example finding the change in the period from the change …
A worked example finding the change in the period from the change in angular velocity, and an example finding the change in frequency from the change in angular velocity.
This lesson begins with an activity in which students induce EMF in …
This lesson begins with an activity in which students induce EMF in a coil of wire using magnetic fields. Then, demonstrations on Eddy currents show how a magnetic field can slow magnets just as Eddy currents are used to slow large trains. There is then a demonstration in which a loop "jumps" because of a changing magnetic field. Finally, formal lecture reviews the cross product with respect to magnetic force and introduces magnetic flux, Faraday's law of Induction, Lenz's Law, Eddy currents, motional EMF and Induced EMF.
In this activity about electricity, learners produce a spark that they can …
In this activity about electricity, learners produce a spark that they can feel, see, and hear. Learners rub a Styrofoam plate with wool to give it an electric charge. Then, they use the charged Styrofoam to charge an aluminum pie pan. Essentially, learners build an electrophorus (Greek for "charge carrier"). This resource also contains instructions on how to build a large charge carrier called a "Leyden Jar" using a plastic film can.
Student groups are given captioned photographs of the Chernobyl Nuclear Power Plant …
Student groups are given captioned photographs of the Chernobyl Nuclear Power Plant facility and surrounding towns taken before and 28 years after the 1986 disaster. Based on the captions and clues in the images, they arrange them in sequential order. While viewing the completed sequence of images, students reflect on what it might have been like to be there, and ask themselves: what were people thinking, doing and saying at each point? This activity assists students in gaining an understanding of how devastating nuclear meltdowns can be, which underscores the importance of responsible engineering. It is recommended that this activity be conducted before the associated lesson, Nuclear Energy through a Virtual Field Trip.
Kinematic equations help solve for an unknown in a problem when an …
Kinematic equations help solve for an unknown in a problem when an object has either a constant velocity or constant acceleration. This video will help you choose which kinematic equations you should use, given the type of problem you're working through.
In this activity related to magnetism and electricity, learners create a magnetic …
In this activity related to magnetism and electricity, learners create a magnetic field that's stronger than the Earth's magnetic field. Learners use electric currents that are stronger than the field of the Earth to move a compass needle. The assembly is made using a lantern battery, heavy wire, a Tinkertoy㢠set, and poster board and utilizes 4-6 small compasses and 2 electrical lead wires.
Students are introduced to several key concepts of electronic circuits. They learn …
Students are introduced to several key concepts of electronic circuits. They learn about some of the physics behind circuits, the key components in a circuit and their pervasiveness in our homes and everyday lives. Students learn about Ohm's Law and how it is used to analyze circuits.
Students use the same method as in the activity from lesson 2 …
Students use the same method as in the activity from lesson 2 of this unit to explore the magnetism due to electric current instead of a permanent magnet. Students use a compass and circuit to trace the magnetic field lines induced by the electric current moving through the wire. Students develop an understanding of the effect of the electrical current on the compass needle through the induced magnetic field and understand the complexity of a three dimensional field system.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.