Updating search results...

Elementary Science

754 affiliated resources

Search Resources

View
Selected filters:
Pulley'ing Your Own Weight
Read the Fine Print
Educational Use
Rating
0.0 stars

Using common materials (spools, string, soap), students learn how a pulley can be used to easily change the direction of a force, making the moving of large objects easier. They see the difference between fixed and movable pulleys, and the mechanical advantage gained with multiple/combined pulleys. They also learn the many ways engineers use pulleys for everyday purposes.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jacquelyn Sullivan
Justin Fritts
Lawrence E. Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Pupil
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, learners explore their eye pupils and how they change. Learners use a magnifying glass, mirror, and flashlight to observe how their pupil changes size in response to changes in lighting. Learners also experiment to determine how light shining in one eye affects the size of the pupil in their other eye. This resource guide includes background information about pupils and why they change as well as information related to emotional stimuli, involuntary reflexes, and photography.

Subject:
Anatomy/Physiology
Life Science
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
11/07/2012
Pupillary Response & Test Your Reaction Time
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe and test their reflexes, including the (involuntary) pupillary response and (voluntary) reaction times using their dominant and non-dominant hands, as a way to further explore how reflexes occur in humans. They gain insights into how our bodies react to stimuli, and how some reactions and body movements are controlled automatically, without conscious thought. Using information from the associated lesson about how robots react to situations, including the stimulus-to-response framework, students see how engineers use human reflexes as examples for controls for robots.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Charlie Franklin
Marianne Catanho
Sachin Nair
Satish Nair
Date Added:
09/18/2014
Put a Spark in It! - Electricity
Read the Fine Print
Educational Use
Rating
0.0 stars

Uncountable times every day with the merest flick of a finger each one of us calls on electricity to do our bidding. What would your life be like without electricity? Students begin learning about electricity with an introduction to the most basic unit in ordinary matter, the atom. Once the components of an atom are addressed and understood, students move into the world of electricity. First, they explore static electricity, followed by basic current electricity concepts such as voltage, resistance and open/closed circuits. Next, they learn about that wonderful can full of chemicals the battery. Students may get a "charge" as they discover the difference between a conductor and an insulator. The unit concludes with lessons investigating simple circuits arranged "in series" and "in parallel," including the benefits and unique features associated with each. Through numerous hands-on activities, students move cereal and foam using charged combs, use balloons to explore electricity and charge polarization, build and use electroscopes to evaluate objects' charge intensities, construct simple switches using various materials in circuits that light bulbs, build and use simple conductivity testers to evaluate materials and solutions, build and experiment with simple series and parallel circuits, design and build their own series circuit flashlight, and draw circuits using symbols.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Putting Robots to Work with Force & Friction
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the concept of pushing, as well as the relationship between force and mass. Students practice measurement skills using pan scales and rulers to make predictions about mass and distance. A LEGO MINDSTORMS(TM) NXT robot is used to test their hypotheses. By the end of the activity, students have a better understanding of robotics, mass and friction and the concept of predicting.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Donna Johnson
Janet Yowell
Joseph Frezzo
Raymond Le Grand
Robyn Tommaselli
Tanjia Chowdhury
Date Added:
09/18/2014
Pyramid Building: How to Use a Wedge
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how simple machines, including wedges, were used in building both ancient pyramids and present-day skyscrapers. In a hands-on activity, students test a variety of wedges on different materials (wax, soap, clay, foam). Students gain an understanding of how simple machines are used in engineering applications to make our lives and work easier.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jacquelyn Sullivan
Lawrence E. Carlson
Lindsey Wright
Malinda Schaefer Zarske
Date Added:
09/18/2014
Race to the Top! Modeling Skyscrapers
Read the Fine Print
Educational Use
Rating
0.0 stars

Working individually or in pairs, students compete to design, create, test and redesign free-standing, weight-bearing towers using Kapla(TM) wooden blocks. The challenge is to build the tallest tower while meeting the design criteria and minimizing the amount of material used all within a time limit. Students experiment with different geometric shapes used in structural designs and determine how design choices affect the height and strength of structures, becoming comfortable with the concepts of structural members and modeling.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Sara Pace
Date Added:
10/14/2015
Ready to Erupt!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe an in-classroom visual representation of a volcanic eruption. The water-powered volcano demonstration is made in advance, using sand, hoses and a waterballoon, representing the main components of all volcanoes. During the activity, students observe, measure and sketch the volcano, seeing how its behavior provides engineers with indicators used to predict an eruption.

Subject:
Applied Science
Engineering
Geology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Geoffrey Hill
Malinda Schaefer Zarske
Date Added:
10/14/2015
Rebuilding Soil with Biochar
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about soil properties and the effect biochar—charcoal used as a soil amendment—has on three soil types, sand, loam and clay. They test the soils’ water retention capability before and after the addition of biochar. During the activity, student teams prepare soil mixtures, make observations (including microscopic examinations), compare soil properties, conduct water retention tests, take and record measurements, and analyze their observations and data. They see how the physical properties of soils—color, texture, and particle size—can be indicators of nutrient content and water retention capabilities to support plant growth. From their findings, they consider biochar’s potential benefits for environmental and agricultural applications, especially in conditions of drought and depleted soils. An activity lab sheet is provided to guide experimental data collection and analysis.

Subject:
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
C.A. Masiello
Carolyn Nichol
Isaias Cerda
X. Gao
Date Added:
02/07/2017
A Recipe for Air
Read the Fine Print
Educational Use
Rating
0.0 stars

Why do we care about air? Breathe in, breathe out, breathe in... most, if not all, humans do this automatically. Do we really know what is in the air we breathe? In this activity, students use M&M(TM) candies to create pie graphs that show their understanding of the composition of air. They discuss why knowing this information is important to engineers and how engineers use this information to improve technology to better care for our planet.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Daria Kotys-Schwartz
Denise W. Carlson
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Recycled Towers
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about material reuse by designing and building the strongest and tallest towers they can, using only recycled materials. They follow design constraints and build their towers to withstand earthquake and high wind simulations.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Jake Crosby
Jonathan McNeil
Malinda Schaefer Zarske
William Surles
Date Added:
09/18/2014
Reflecting on Human Reflexes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about human reflexes, how our bodies react to stimuli and how some body reactions and movements are controlled automatically, without thinking consciously about the movement or responses. In the associated activity, students explore how reflexes work in the human body by observing an involuntary human reflex and testing their own reaction times using dominant and non-dominant hands. Once students understand the stimulus-to-response framework components as a way to describe human reflexes and reactions in certain situations, they connect this knowledge to how robots can be programmed to conduct similar reactions.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Charlie Franklin
Marianne Catanho
Sachin Nair
Satish Nair
Date Added:
09/18/2014
Remote Control Using Bluetooth
Read the Fine Print
Educational Use
Rating
0.0 stars

Building on what they learned about wired and wireless electrical connections in the associated lesson, students use Android phones to take advantage of Bluetooth wireless connections to remotely guide LEGO MINDSTORMS(TM) NXT robots through a maze. They compare this wireless remote control navigation to their previous experiences navigating LEGO robots via programming. A PowerPoint® presentation and pre/post quizzes are provided.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Riaz Helfer
Sachin Nair
Satish S. Nair
Date Added:
09/18/2014
Renewable Energy
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students are introduced to the types of renewable energy resources. They are involved in activities to help them understand the transformation of energy (solar, water and wind) into electricity. Students explore the different roles of engineers working in renewable energy fields.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Date Added:
09/18/2014
Renewable Energy Living Lab: Energy Experts
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use real-world data to evaluate various renewable energy sources and the feasibility of implementing these sources. Working in small groups, students use data from the Renewable Energy Living Lab to describe and understand the way the world works. The data is obtained through observation and experimentation. Using the living lab gives students and teachers the opportunity to practice analyzing data to solve problems or answer questions, in much the same way that scientists and engineers do every day.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Date Added:
09/18/2014
Renewable Energy Living Lab: Energy Priorities
Read the Fine Print
Educational Use
Rating
0.0 stars

Students analyze real-world data for five types of renewable energy, as found on the online Renewable Energy Living Lab. They identify the best and worst locations for production of each form of renewable energy, and then make recommendations for which type that state should pursue.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
10/14/2015
Renewable Energy Living Lab: Power Your School
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use real-world data to calculate the potential for solar and wind energy generation at their school location. After examining maps and analyzing data from the online Renewable Energy Living Lab, they write recommendations as to the optimal form of renewable energy the school should pursue.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Renewable Energy Living Lab: Smart Solar
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use real-world data to evaluate whether solar power is a viable energy alternative for several cities in different parts of the U.S. Working in small groups, they examine maps and make calculations using NREL/US DOE data from the online Renewable Energy Living Lab. In this exercise, students analyze cost and availability for solar power, and come to conclusions about whether solar power is a good solution for four different locations.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Reverse Engineering: Ball Bounce Experiment
Read the Fine Print
Educational Use
Rating
0.0 stars

Many of today's popular sports are based around the use of balls, yet none of the balls are completely alike. In fact, they are all designed with specific characteristics in mind and are quite varied. Students investigate different balls' abilities to bounce and represent the data they collect graphically.

Subject:
Mathematics
Measurement and Data
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Date Added:
01/01/2015