All resources in Hawaii DOE STEM

STEM Through Wind Turbines

(View Complete Item Description)

This unit integrates scientific inquiry, the engineering design process, with math practices and technology. Students learn about energy, alternative energy, designing experiments and use math and technology as tools to accomplish their tasks.

Material Type: Activity/Lab, Assessment

Author: JC HIDOE

What Is the Design Process?

(View Complete Item Description)

This video segment, adapted fromThinking Big, Building Small, demonstrates each part of the engineering design process, which is fundamental to any successful project. Though it does this in the context of building skyscrapers, the process is applicable to any sort of project, including constructing schools, building bridges, and even manufacturing sneakers. Students will recognize the value of going through its steps sequentially when constructing scale models. Recommended for: Grades 3-12

Material Type: Activity/Lab

Authors: National Science Foundation, WGBH Educational Foundation

Biodomes

(View Complete Item Description)

Students explore the biosphere's environments and ecosystems, learning along the way about the plants, animals, resources and natural cycles of our planet. Over the course of lessons 2-6, students use their growing understanding of various environments and the engineering design process to design and create their own model biodome ecosystems - exploring energy and nutrient flows, basic needs of plants and animals, and decomposers. Students learn about food chains and food webs. They are introduced to the roles of the water, carbon and nitrogen cycles. They test the effects of photosynthesis and transpiration. Students are introduced to animal classifications and interactions, including carnivore, herbivore, omnivore, predator and prey. They learn about biomimicry and how engineers often imitate nature in the design of new products. As everyday applications are interwoven into the lessons, students consider why a solid understanding of one's environment and the interdependence within ecosystems can inform the choices we make and the way we engineer our communities.

Material Type: Activity/Lab, Lesson Plan

Authors: Christopher Valenti, Denise W. Carlson, Malinda Schaefer Zarske

Natural Disasters

(View Complete Item Description)

Students are introduced to our planet's structure and its dynamic system of natural forces through an examination of the natural hazards of earthquakes, volcanoes, landslides, tsunamis, floods and tornados, as well as avalanches, fires, hurricanes and thunderstorms. They see how these natural events become disasters when they impact people, and how engineers help to make people safe from them. Students begin by learning about the structure of the Earth; they create clay models showing the Earth's layers, see a continental drift demo, calculate drift over time, and make fault models. They learn how earthquakes happen; they investigate the integrity of structural designs using model seismographs. Using toothpicks and mini-marshmallows, they create and test structures in a simulated earthquake on a tray of Jell-O. Students learn about the causes, composition and types of volcanoes, and watch and measure a class mock eruption demo, observing the phases that change a mountain's shape. Students learn that the different types of landslides are all are the result of gravity, friction and the materials involved. Using a small-scale model of a debris chute, they explore how landslides start in response to variables in material, slope and water content. Students learn about tsunamis, discovering what causes them and makes them so dangerous. Using a table-top-sized tsunami generator, they test how model structures of different material types fare in devastating waves. Students learn about the causes of floods, their benefits and potential for disaster. Using riverbed models made of clay in baking pans, students simulate the impact of different river volumes, floodplain terrain and levee designs in experimental trials. They learn about the basic characteristics, damage and occurrence of tornadoes, examining them closely by creating water vortices in soda bottles. They complete mock engineering analyses of tornado damage, analyze and graph US tornado damage data, and draw and present structure designs intended to withstand high winds.

Material Type: Activity/Lab, Lesson Plan

Naturally Disastrous

(View Complete Item Description)

Students are introduced to natural disasters, and learn the difference between natural hazards and natural disasters. They discover the many types of natural hazards avalanche, earthquake, flood, forest fire, hurricane, landslide, thunderstorm, tornado, tsunami and volcano as well as specific examples of natural disasters. Students also explore why understanding these natural events is important to engineers and everyone's survival on our planet.

Material Type: Activity/Lab, Lesson Plan

Authors: Denise W. Carlson, Geoffrey Hill, Malinda Schaefer Zarske

Save Our City!

(View Complete Item Description)

Students learn about various natural hazards and specific methods engineers use to prevent these hazards from becoming natural disasters. They study a hypothetical map of an area covered with natural hazards and decide where to place natural disaster prevention devices by applying their critical thinking skills and an understanding of the causes of natural disasters.

Material Type: Activity/Lab, Lesson Plan

Authors: Denise Carlson, Geoffrey Hill, Malinda Schaefer Zarske

Engineering for the Three Little Pigs

(View Complete Item Description)

The purpose of this activity is to demonstrate the importance of rocks, soils and minerals in engineering and how using the right material for the right job is important. The students build three different sand castles and test them for strength and resistance to weathering. Then, they discuss how the buildings are different and what engineers need to think about when using rocks, soils and minerals for construction.

Material Type: Activity/Lab, Lesson Plan

Authors: Geoffrey Hill, Janet Yowell, Malinda Schaefer Zarske, Tim Nicklas

Energy Conversions

(View Complete Item Description)

Students evaluate various everyday energy conversion devices and draw block flow diagrams to show the forms and states of energy into and out of the device. They also identify the forms of energy that are useful and the desired output of the device as well as the forms that are not useful for the intended use of the item. This can be used to lead into the law of conservation of energy and efficiency. The student activity is preceded by a demonstration of a more complicated system to convert chemical energy to heat energy to mechanical energy. Drawing the block energy conversion diagram for this system models the activity that the students then do themselves for other simpler systems.

Material Type: Activity/Lab, Lesson Plan

Authors: Jan DeWaters, Susan Powers

Food Packaging

(View Complete Item Description)

This lesson focuses on how food packages are designed and made. Students will learn three of the main functions of a food package. They will learn what is necessary of the design and materials of a package to keep food clean, protect or aid in the physical and chemical changes that can take place in a food, and identify a food appealingly. Then, in the associated activity, the students will have the opportunity to become packaging engineers by designing and building their own food package for a particular type of food.

Material Type: Activity/Lab, Lesson Plan

Author: Chloe Mawer