This is a new approach to an introductory statistical inference textbook, motivated …
This is a new approach to an introductory statistical inference textbook, motivated by probability theory as logic. It is targeted to the typical Statistics 101 college student, and covers the topics typically covered in the first semester of such a course. It is freely available under the Creative Commons License, and includes a software library in Python for making some of the calculations and visualizations easier.
This course is an introduction to statistical data analysis. Topics are chosen …
This course is an introduction to statistical data analysis. Topics are chosen from applied probability, sampling, estimation, hypothesis testing, linear regression, analysis of variance, categorical data analysis, and nonparametric statistics.
This site teaches High Schoolers how to Make Inferences and Justify Conclusions …
This site teaches High Schoolers how to Make Inferences and Justify Conclusions using statistics through a series of 99 questions and interactive activities aligned to 4 Common Core mathematics skills.
A whirl-wind tour of the statistics used in behavioral science research, covering …
A whirl-wind tour of the statistics used in behavioral science research, covering topics including: data visualization, building your own null-hypothesis distribution through permutation, useful parametric distributions, the generalized linear model, and model-based analyses more generally. Familiarity with MATLAB®, Octave, or R will be useful, prior experience with statistics will be helpful but is not essential. This course is intended to be a ground-up sketch of a coherent, alternative perspective to the “null-hypothesis significance testing” method for behavioral research (but don’t worry if you don’t know what this means).
6.825 is a graduate-level introduction to artificial intelligence. Topics covered include: representation …
6.825 is a graduate-level introduction to artificial intelligence. Topics covered include: representation and inference in first-order logic, modern deterministic and decision-theoretic planning techniques, basic supervised learning methods, and Bayesian network inference and learning. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5504 (Techniques in Artificial Intelligence).
The course provides a survey of the theory and application of time …
The course provides a survey of the theory and application of time series methods in econometrics. Topics covered will include univariate stationary and non-stationary models, vector autoregressions, frequency domain methods, models for estimation and inference in persistent time series, and structural breaks. We will cover different methods of estimation and inferences of modern dynamic stochastic general equilibrium models (DSGE): simulated method of moments, Maximum likelihood and Bayesian approach. The empirical applications in the course will be drawn primarily from macroeconomics.
This article provides links to interactive web sites and lesson plans for …
This article provides links to interactive web sites and lesson plans for teaching about paleontology, dinosaurs, and archaeology in the elementary classroom.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.