This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Disruption. For better or worse, perhaps no other buzzword better captures the spectacular pace of technology over the past few decades. Though it’s casually attached to any new app or gadget hatched in the tech world, several examples of true technological disruption surround us today. One of the most compelling is perovskite-based solar cells. With a power conversion efficiency that now tops that of their silicon predecessors, these rapidly developing devices stand to make a meaningful impact on the solar energy market—and energy consumption at large. A perovskite is a compound possessing a crystal structure that looks like this. Some of the best performing perovskite materials used in solar cells feature an organic ion housed within an inorganic cage. This complex structure provides a chemical ruggedness not found in traditional solar cell materials. Economically, that translates to cheaper manufacturing. And in terms of operation, it means more stable performance..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"New technologies for enhancing electronics and photonics are crucial for emerging applications in energy, sensing, artificial intelligence, and countless other areas. But these technologies are hard to come by using traditional semiconductors. Over the past decade, so-called third-generation semiconductors have proved to be a boon to materials science and engineering, giving researchers increased versatility in boosting device performance. Among the most promising properties of these materials is piezoelectricity—the ability to convert mechanical energy to electrical energy and vice versa. The December 2018 issue of the MRS Bulletin takes a look at how researchers are exploiting piezoelectricity in semiconductors to enhance electronic and photonic devices like never before, providing a glimpse into the world of piezotronics and piezo-phototronics. In 2006, Zhong Lin Wang’s group at Georgia Tech discovered that piezoelectricity in zinc oxide nanowires exerts a gating effect like that in transistors..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Quantum materials are opening up a realm of possibilities in materials research. Among the best known examples are superconductivity and quantum computing. But that’s only the beginning. The same properties that make these materials unique are also enabling researchers to demystify the inner workings of the human brain. So what makes quantum materials well suited for this purpose? Unlike the free-flowing electrons in ordinary conductors or semiconductors, electrons in quantum materials show correlated behavior. That in itself has been the focus of intense physics research. But the upshot for brain research is tunable electronic behavior that can mimic the electronic signaling of neurons and the synapses between them. Most importantly, quantum materials can simulate synaptic plasticity. Plasticity is the biological ability that makes learning and memory formation possible. It’s all about timing. Connections between neurons that fire within a short, milliseconds-long time window grow stronger..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
Stephen Selkowitz of the Lawrence Berkeley National Laboratory leads a group of …
Stephen Selkowitz of the Lawrence Berkeley National Laboratory leads a group of architects, engineers and scientists who are studying all aspects of the thermal and daylighting performance of glazing materials and window systems. Learn how these windows may be incorporated into the energy efficiencies of buildings. John Mahoney of Chevron Energy Solutions contributes to the discussion. (79 minutes)
Students are tasked with designing a special type of hockey stick for …
Students are tasked with designing a special type of hockey stick for a sled hockey team—a sport designed for individuals with physical disabilities to play ice hockey. Using the engineering design process, students act as material engineers to create durable hockey sticks using a variety of materials. The stick designs will contain different interior structures that can hold up during flexure (or bending) tests. Following flexure testing, the students can use their results to iterate upon their design and create a second stick.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"It might seem like something straight out of comic book fantasy, but this self-healing material is all real. Able to repair itself in mere minutes—with practically no external input—this new class of polymer could hold the key to making plastics nearly invincible. To be sure, self-healing materials aren’t all that new. Scientists have discovered that the lime mortar used in Ancient Roman structures like the Colosseum forms tiny plate-like crystals that fill in cracks that develop over time. And researchers long ago cracked the chemistry that enables polymer networks to zip back up after damage. These materials, however, typically involve expensive and sophisticated designs. Many require complex chemical reactions to function or ionic or electronic interactions found only in a small subset of polymers. On top of that, repair often requires an external source of energy, typically in the form of heat, light, or pressure..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Melanin is a versatile molecule. Not only is it responsible for giving us our UV-blocking complexion. At the cellular level, it gobbles up harmful radicals that lead to diseases such as cancer and Parkinson's. But that's only the beginning. Over the past decade, researchers have focused on what might be melanin's most promising talent yet discovered: the ability to conduct electricity. That's important, because if we fancy a future where environmentally benign electronics help us fight disease, monitor our health, and store energy, we’re going to need biofriendly materials. And what better material for the job than one made right in-house. This is melanin in its most common form. When it comes to electrical charge, melanin acts as a sort of bank: always ready to lend out or take electrons, depending on the environment. Chained together, as they naturally tend to do, melanin molecules can shuffle electrons and surrounding ions end to end. The result is an all-natural electrode material..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Nature is everything around us, and it is essential to our survival. But air pollution threatens to become its undoing, causing harm to nature and illness and death to humankind. Among numerous toxic gases, hydrogen sulfide - H₂S - is unique due to its industrial and natural origin, as well as its high toxicity. Arising primarily from oil rigs and catastrophic flooding, H₂S has severe effects on the respiratory and nervous system, making early environmental detection essential. Although many detection techniques exist, they suffer from large size, low sensitivity, and high cost. With this in mind, scientists from the research group of Dr. C.V. Yelamaggad at CeNS Bangalore designed novel materials capable of H₂S sensing at very low concentrations. The functional organic materials, called tris-hydrazones, were fabricated by Professor Khaled Salama’s group from King Abdullah University of Science and Technology..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.