Updating search results...

Search Resources

996 Results

View
Selected filters:
  • Atmospheric Science
Asthma & Wildfires: Human Story + Scientific Story (an integrated adaptation)
Unrestricted Use
CC BY
Rating
0.0 stars

This module is adapted from the original Department of Health module, which you can find here.We were inspired by the original and heartened at the opportunity to integrate across content areas.Our iteration includes direct connections with secondary ELA and showcases content integration across science and social studies with a strong social justice component. ​Furthermore, our adaptation highlights Washington state policy that addresses wildfire awareness, prevention, and preventive measures.Please note the work of the Department of Health Epidemiologists in using data science to understand medical trends and the opportunity to plan health interventions. This is a strong career connection for our students.

Subject:
Atmospheric Science
Biology
Ecology
Education
English Language Arts
Environmental Science
Environmental Studies
Health, Medicine and Nursing
Information Science
Material Type:
Activity/Lab
Module
Author:
Heidi Aijala
Date Added:
03/30/2023
Atmosphere, Ocean and Climate Dynamics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.
Acknowledgments
Prof. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall.

Subject:
Applied Science
Atmospheric Science
Engineering
Environmental Science
Oceanography
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Ferrari, Raffaele
Date Added:
09/01/2008
Atmosphere, Ocean and Climate Dynamics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.
Acknowledgments
Prof. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall.

Subject:
Applied Science
Atmospheric Science
Engineering
Oceanography
Physical Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Ferrari, Raffaele
Date Added:
09/01/2008
The Atmosphere, the Ocean, and Environmental Change
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course explores the physical processes that control Earth's atmosphere, ocean, and climate. Quantitative methods for constructing mass and energy budgets. Topics include clouds, rain, severe storms, regional climate, the ozone layer, air pollution, ocean currents and productivity, the seasons, El Ni–o, the history of Earth's climate, global warming, energy, and water resources.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
Yale University
Provider Set:
Open Yale Courses
Author:
Ronald B. Smith
Date Added:
04/30/2012
Atmospheric Carbon: Can We Offset the Increase?
Read the Fine Print
Rating
0.0 stars

This is a multi-step activity that helps students measure, investigate, and understand the increase in atmospheric CO2 and the utility of carbon offsets. It also enables students to understand that carbon offsets, through reforestation, are not sufficient to balance increases in atmospheric C02 concentration.

Subject:
Atmospheric Science
Physical Science
Material Type:
Activity/Lab
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Jocelyn Boucher
Maine Maritime Academy
On the Cutting Edge
Date Added:
09/24/2018
Atmospheric Chemistry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides a detailed overview of the chemical transformations that control the abundances of key trace species in the Earth’s atmosphere. Emphasizes the effects of human activity on air quality and climate. Topics include photochemistry, kinetics, and thermodynamics important to the chemistry of the atmosphere; stratospheric ozone depletion; oxidation chemistry of the troposphere; photochemical smog; aerosol chemistry; and sources and sinks of greenhouse gases and other climate forcers.

Subject:
Applied Science
Atmospheric Science
Career and Technical Education
Environmental Science
Environmental Studies
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Kroll, Jesse
Date Added:
09/01/2013
Atmospheric Chemistry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides a detailed overview of the chemical transformations that control the abundances of key trace species in the Earth’s atmosphere. Emphasizes the effects of human activity on air quality and climate. Topics include photochemistry, kinetics, and thermodynamics important to the chemistry of the atmosphere; stratospheric ozone depletion; oxidation chemistry of the troposphere; photochemical smog; aerosol chemistry; and sources and sinks of greenhouse gases and other climate forcers.

Subject:
Applied Science
Atmospheric Science
Career and Technical Education
Environmental Science
Environmental Studies
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Kroll, Jesse
Date Added:
09/01/2013
Atmospheric Physics and Chemistry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides an introduction to the physics and chemistry of the atmosphere, including experience with computer codes. It is intended for undergraduates and first year graduate students.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
McRae, Gregory
Prinn, Ronald
Date Added:
02/01/2006
Atmospheric Processes and Phenomenon
Rating
0.0 stars

This textbook serves as an introduction to atmospheric science for undergraduate students and is the primary textbook for the ATMO 200: Atmospheric Processes and Phenomenon course at the University of Hawai’i at Mānoa. The book covers basic atmospheric science, weather, and climate in a descriptive and quantitative way.

Subject:
Atmospheric Science
Physical Science
Material Type:
Textbook
Author:
Alison Nugent
Christina Karamperidou
David Decou
Shintaro Russell
Date Added:
04/14/2022
Atmospheric Radiation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Subjects covered include: radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. We examine the solution of inverse problems in remote sensing of atmospheric temperature and composition.

Subject:
Atmospheric Science
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
McClatchey, Robert
Seager, Sara
Date Added:
09/01/2008
Atmospheric Radiation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Subjects covered include: radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. We examine the solution of inverse problems in remote sensing of atmospheric temperature and composition.

Subject:
Atmospheric Science
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
McClatchey, Robert
Prinn, Ronald
Date Added:
09/01/2006
Atmospheric and Ocean Circulations
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course, we will look at many important aspects of the circulation of the atmosphere and ocean, from length scales of meters to thousands of km and time scales ranging from seconds to years. We will assume familiarity with concepts covered in course 12.003 (Physics of the Fluid Earth). In the early stages of the present course, we will make somewhat greater use of math than did 12.003, but the math we will use is no more than that encountered in elementary electromagnetic field theory, for example. The focus of the course is on the physics of the phenomena which we will discuss.

Subject:
Atmospheric Science
Oceanography
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Plumb, R.
Date Added:
02/01/2004
Atmospheric and Ocean Circulations
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course, we will look at many important aspects of the circulation of the atmosphere and ocean, from length scales of meters to thousands of km and time scales ranging from seconds to years. We will assume familiarity with concepts covered in course 12.003 (Physics of the Fluid Earth). In the early stages of the present course, we will make somewhat greater use of math than did 12.003, but the math we will use is no more than that encountered in elementary electromagnetic field theory, for example. The focus of the course is on the physics of the phenomena which we will discuss.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Plumb, R.
Date Added:
02/01/2004
Atmospheric and Oceanic Modeling
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The numerical methods, formulation and parameterizations used in models of the circulation of the atmosphere and ocean will be described in detail. Widely used numerical methods will be the focus but we will also review emerging concepts and new methods. The numerics underlying a hierarchy of models will be discussed, ranging from simple GFD models to the high-end GCMs. In the context of ocean GCMs, we will describe parameterization of geostrophic eddies, mixing and the surface and bottom boundary layers. In the atmosphere, we will review parameterizations of convection and large scale condensation, the planetary boundary layer and radiative transfer.

Subject:
Applied Science
Atmospheric Science
Engineering
Mathematics
Oceanography
Physical Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Adcroft, Alistair
Emanuel, Kerry
Marshall, John
Date Added:
02/01/2004
Atmospheric methyl chloroform: a leaky water tank example
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Atmospheric methyl chloroform concentration is modeled as an extension of the generic water tank structure. Simulated and observed concentrations are used to estimate the global atmospheric lifetime of methyl chloroform and its 1989 to 2009 emission history.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Atmospheric Science
Biology
Career and Technical Education
Environmental Studies
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Bob Mackay
Date Added:
08/31/2019
Aurora Comparisons
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

This is a lesson which gives students the opportunity to imagine they are scientists, provides them with a basic understanding of aurora and helps them to use creative methods in their observations. First, students will study the scientific aspect of the aurora. They will also look at images of the aurora (both pictures and illustrations) and describe what they think of when they see them. These descriptions can be stored in the student portfolios as they will be useful in future lessons. Includes teacher notes and instructions, student workshops and an online, animated story, and related teacher resources on aurora. This is lesson three of a collection of five activities that can be used individually or as a sequence; concludes with a KWL (Know/Want-to-know/Learned) assessment activity.

Subject:
Applied Science
Astronomy
Atmospheric Science
Chemistry
Environmental Science
Physical Science
Physics
Space Science
Material Type:
Activity/Lab
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Aurora Poetry
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

In this lesson, students will demonstrate their understanding of the aurora by writing their own poems. Teachers can decide which form(s) of poetry to use from their worksheets or allow students to create their own. Examples of styles include: Acrostic, List, Haiku, Like and As, and May and Could. To help students get inspired, the class will read a poem on the aurora, and they can also look through their portfolios to help form ideas. Includes teacher notes and instructions, student workshops and an online, animated story, and related teacher resources on aurora. This is lesson five of a collection of five activities that can be used individually or as a sequence; concludes with a KWL (Know/Want-to-know/Learned) assessment activity.

Subject:
Applied Science
Astronomy
Atmospheric Science
Chemistry
Environmental Science
Physical Science
Physics
Space Science
Material Type:
Activity/Lab
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Automotive Emissions and the Greenhouse Effect
Unrestricted Use
CC BY
Rating
0.0 stars

This is a laboratory activity in which students will compare the amount of carbon dioxide in four different sources of gas and determine the carbon dioxide contribution from automobiles. They test ambient air, human exhalation, automobile exhaust, and nearly pure carbon dioxide from a vinegar/baking soda mixture.

Subject:
Applied Science
Atmospheric Science
Environmental Science
Physical Science
Material Type:
Activity/Lab
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Texas State Energy Conservation Office
Date Added:
06/19/2012
Backyard Weather Station
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use their senses to describe what the weather is doing and predict what it might do next. After gaining a basic understanding of weather patterns, students act as state park engineers and design/build "backyard weather stations" to gather data to make actual weather forecasts.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
10/14/2015
Baking the Breadbasket: Persistent Drought in the Heartland
Read the Fine Print
Rating
0.0 stars

In this video, NOAA's Deke Arndt, Chief of the Climate Monitoring Branch at the National Climatic Data Center, recaps the temperature and precipitation data for the continental US in summer 2012. It describes how these conditions have led to drought and reduced crop yields.

Subject:
Agriculture
Applied Science
Atmospheric Science
Career and Technical Education
Environmental Science
Environmental Studies
Physical Science
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
Deke Arndt
NOAA
Date Added:
09/24/2018