Our planet is becoming hot. In fact, Earth may be warming faster …
Our planet is becoming hot. In fact, Earth may be warming faster than ever before. This warming will challenge society throughout the 21st century. How do we cope with rising seas? How will we prepare for more intense hurricanes? How will we adapt to debilitating droughts and heat waves? Scientists are striving to improve predictions of how the environment will change and how it will impact humans. Earth in the Future: Predicting Climate Change and Its Impacts Over the Next Century is designed to provide the state of the art of climate science, the impact of warming on humans, as well as ways we can adapt. Every student will understand the challenges and opportunities of living in the 21st century.
This is a unit plan where students will understand how Earth is …
This is a unit plan where students will understand how Earth is systems of interacting components (spheres) and how changing one sphere will affect another. The carbon cycle is studied in quantity of carbon in each reservoir and how human and natural processes move carbon from one reservoir to another in two different time scales. The carbon cycle is studied qualitatively through demonstrations or labs with students developing models of the from of carbon in each reservoir.
We will cover fundamentals of ecology, considering Earth as an integrated dynamic …
We will cover fundamentals of ecology, considering Earth as an integrated dynamic system. Topics include coevolution of the biosphere, geosphere, atmosphere and oceans; photosynthesis and respiration; the hydrologic, carbon and nitrogen cycles. We will examine the flow of energy and materials through ecosystems; regulation of the distribution and abundance of organisms; structure and function of ecosystems, including evolution and natural selection; metabolic diversity; productivity; trophic dynamics; models of population growth, competition, mutualism and predation. This course is designated as Communication-Intensive; instruction and practice in oral and written communication provided. Biology is a recommended prerequisite.
We will cover fundamentals of ecology, considering Earth as an integrated dynamic …
We will cover fundamentals of ecology, considering Earth as an integrated dynamic system. Topics include coevolution of the biosphere, geosphere, atmosphere and oceans; photosynthesis and respiration; the hydrologic, carbon and nitrogen cycles. We will examine the flow of energy and materials through ecosystems; regulation of the distribution and abundance of organisms; structure and function of ecosystems, including evolution and natural selection; metabolic diversity; productivity; trophic dynamics; models of population growth, competition, mutualism and predation. This course is designated as Communication-Intensive; instruction and practice in oral and written communication provided. Biology is a recommended prerequisite.
Ecology For All! Is an ecology text designed in modules so that …
Ecology For All! Is an ecology text designed in modules so that instructors can choose the pieces that make sense to assign in their context. This book has been in development for several years and is a collaborative effort of authors at Gettysburg College, Franklin & Marshall College, and University of Pittsburgh. The textbook covers a wide range of topics including Introduction to Ecology, Evolution, Adaptations to the Physical Environment, various ecological communities, Population Ecology, Behavioral Ecology, Species Interactions, Ecological Succession, Biogeochemical Cycles, Landscape Ecology, Biodiversity, Conservation Biology, and Human Impact on Global Climate among others. The authors have presented on it at the Ecological Society of America meeting and the book continues to evolve.
This video focuses on the conifer forest in Alaska to explore the …
This video focuses on the conifer forest in Alaska to explore the carbon cycle and how the forest responds to rising atmospheric carbon dioxide. Topics addressed in the video include wildfires, reflectivity, and the role of permafrost in the global carbon cycle.
This set of five activities focuses on how climate change can affect …
This set of five activities focuses on how climate change can affect agriculture, including crop production and ranching. The activities in this guide are appropriate for both formal and informal settings and all student handouts, instructor guides, and supporting files are included. The curriculum is designed for five days of activities that build on one another, but can also be used individually.
The following six figures represent electron transport chains functioning within the processes …
The following six figures represent electron transport chains functioning within the processes of nitrification and denitrification within the nitrogen cycle, and methanogenesis within the carbon cycle. Each figure is included with and without a legend. Figure 1 represents oxidation of ammonia to nitrite, the first phase of nitrification. Figure 2 represents oxidation of nitrite to nitrate, the second phase of nitrification. Figure 3 represents reduction of nitrate to molecular nitrogen through denitrification. Figure 4 represents oxidation of ammonia to nitrous oxide by ammonia-oxidizing bacteria. Figure 5 represents reduction of nitrate to nitrous oxide by incomplete denitrification. Figure 6 represents reduction of carbon dioxide by hydrogen gas to produce methane.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"All living things need phosphorus to survive. However, its low availability in soil is often a limiting factor for plant and microbial growth. Microorganisms in the plant root-soil interface (rhizosphere) can convert non-labile phosphorus into bioavailable forms. One way microbes do this is the mineralization of organic phosphorus compounds like phytate. Rising atmospheric CO₂ levels may accelerate mineralization, but the molecular mechanisms are not yet understood. Recent research confirmed that elevated CO₂ (eCO₂) increased the mineralization of phytate in the rhizosphere of wheat. Tracing the carbon flow showed that plants grown under eCO₂ increased the release of bioavailable carbon belowground, which corresponded to increased microbial growth and altered community composition. The bacterial community under eCO₂ favored groups of bacteria capable of degrading aromatic phosphorus compounds and the mycorrhizal fungi benefited from the increased supply of phosphorus and carbon..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This activity introduces students to different forms of energy, energy transformations, energy …
This activity introduces students to different forms of energy, energy transformations, energy storage, and the flow of energy through systems. Students learn that most energy can be traced back to nuclear fusion on the sun.
What is energy? It's the hot in heat, the glow in light, …
What is energy? It's the hot in heat, the glow in light, the push in wind, the pound in water, the sound of thunder and the crack of lightening. It is the pull that keeps us (and everything else!) from simply flying apart, and the promise of an oak deep in an acorn. It is all the same, and it is all different. Sunshine and waterfalls won't start your car, and wind won't run the dishwasher. But, if we match the form and timing of the energy with your needs, all of these things could be true. Energy in a Changing World is about the full arc of energy transformation, delivery, use, economics and environmental impact, especially climate change.
This video documents how scientists, using marine algae, can study climate change …
This video documents how scientists, using marine algae, can study climate change in the past to help understand potential effects of climate change in the future.
This animated slideshow introduces biodiesel as a fuel alternative. With concern about …
This animated slideshow introduces biodiesel as a fuel alternative. With concern about the use of petroleum-based fuels at an all-time high, biodiesel is experiencing a popularity surge. And algaeâotherwise known to some as pond scumâ are grabbing headlines as the next potential biodiesel superstar. But how and why do algae make oil? And why do they make so much of it? In this audio slide show, U.C. Berkeley's Kris Niyogi describes the process and its potential.
Many elements are interconnected and function together to create the natural and …
Many elements are interconnected and function together to create the natural and productive living system that is your garden. The purpose of this activity guide is to teach students the ecological functions found in any natural system and model how these functions are performed by a natural area like a garden.
This course introduces the parallel evolution of life and the environment. Life …
This course introduces the parallel evolution of life and the environment. Life processes are influenced by chemical and physical processes in the atmosphere, hydrosphere, cryosphere and the solid earth. In turn, life can influence chemical and physical processes on our planet. This course explores the concept of life as a geological agent and examines the interaction between biology and the earth system during the roughly 4 billion years since life first appeared.
This course introduces the parallel evolution of life and the environment. Life …
This course introduces the parallel evolution of life and the environment. Life processes are influenced by chemical and physical processes in the atmosphere, hydrosphere, cryosphere and the solid earth. In turn, life can influence chemical and physical processes on our planet. This course explores the concept of life as a geological agent and examines the interaction between biology and the earth system during the roughly 4 billion years since life first appeared.
This simulation allows the user to project CO2 sources and sinks by …
This simulation allows the user to project CO2 sources and sinks by adjusting the points on a graph and then running the simulation to see projections for the impact on atmospheric CO2 and global temperatures.
The activity follows a progression that examines the CO2 content of various …
The activity follows a progression that examines the CO2 content of various gases, explores the changes in the atmospheric levels of CO2 from 1958 to 2000 from the Mauna Loa Keeling curve, and the relationship between CO2 and temperature over the past 160,000 years. This provides a foundation for examining individuals' input of CO2 to the atmosphere and how to reduce it.
A sequence of five short animated videos that explain the properties of …
A sequence of five short animated videos that explain the properties of carbon in relationship to global warming, narrated by Robert Krulwich from NPR.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.