Updating search results...

Search Resources

68 Results

View
Selected filters:
  • solar
Renewable Energy Living Lab: Energy Priorities
Read the Fine Print
Educational Use
Rating
0.0 stars

Students analyze real-world data for five types of renewable energy, as found on the online Renewable Energy Living Lab. They identify the best and worst locations for production of each form of renewable energy, and then make recommendations for which type that state should pursue.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
10/14/2015
Renewable Energy Living Lab: Exploring Regional and Local Resources
Read the Fine Print
Educational Use
Rating
0.0 stars

Students become familiar with the online Renewable Energy Living Lab interface and access its real-world solar energy data to evaluate the potential for solar generation in various U.S. locations. They become familiar with where the most common sources of renewable energy are distributed across the U.S. Through this activity, students and teachers gain familiarity with the living lab's GIS graphic interface and query functions, and are exposed to the available data in renewable energy databases, learning how to query to find specific information for specific purposes. The activity is intended as a "training" activity prior to conducting activities such as The Bright Idea activity, which includes a definitive and extensive end product (a feasibility plan) for students to create.

Subject:
Applied Science
Ecology
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Renewable Energy Living Lab: Power Your School
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use real-world data to calculate the potential for solar and wind energy generation at their school location. After examining maps and analyzing data from the online Renewable Energy Living Lab, they write recommendations as to the optimal form of renewable energy the school should pursue.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Renewable Energy Living Lab: Smart Solar
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use real-world data to evaluate whether solar power is a viable energy alternative for several cities in different parts of the U.S. Working in small groups, they examine maps and make calculations using NREL/US DOE data from the online Renewable Energy Living Lab. In this exercise, students analyze cost and availability for solar power, and come to conclusions about whether solar power is a good solution for four different locations.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Renewable Energy Living Lab: The Bright Idea
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use real-world data to evaluate the feasibility of solar energy and other renewable energy sources in different U.S. locations. Working in small groups, students act as engineers evaluating the suitability of installing solar panels at four company locations. They access data from the online Renewable Energy Living Lab from which they make calculations and analyze how successful solar energy generation would be, as well as the potential for other power sources at those locations. Then they summarize their results, analysis and recommendations in the form of feasibility plans prepared for a CEO.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jessica Noffsinger
Jonathan Knudtsen
Karen Johnson
Mike Mooney
Minal Parekh
Scott Schankweiler
Date Added:
09/18/2014
Renewable Sources of Energy
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

The lesson is a short and simple account about renewable sources of energy. Students will learn about what nonrenewable sources of energy are and why we should avoid using them. They will be able to identify renewable sources of energy around them. They will be able to identify installations pertaining to renewable sources of energy such as wind mills, solar panels. They will realize the importance of energy conservation and may make changes in their lives to save energy. This will also help save on energy bills.

Subject:
Applied Science
Life Science
Physical Science
Material Type:
Lesson
Date Added:
05/06/2016
Smithsonian Science Starter: ISS Crew Readies for Unique View of the Solar Eclipse - ISS Science
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Astronaut Randy Bresnik will have a unique view as he watches from space. In this episode of ISS Science, find out how the ISS crew will watch and learn how to build your own eclipse.

Subject:
Physical Science
Material Type:
Lesson
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
09/01/2022
Smithsonian Science Starter: Modeling a Solar Eclipse
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This lesson investigates the alignment of the Earth, the Moon, and the Sun during a solar eclipse and model that alignment with classroom materials.

Subject:
Education
Physical Science
Material Type:
Lesson Plan
Provider:
National Air and Space Museum
Author:
National Air and Space Museum
Date Added:
09/01/2022
Solar Angles and Tracking Systems
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the daily and annual cycles of solar angles used in power calculations to maximize photovoltaic power generation. They gain an overview of solar tracking systems that improve PV panel efficiency by following the sun through the sky.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abby Watrous
Eszter Horanyi
Malinda Schaefer Zarske
William Surles
Date Added:
09/18/2014
Solar Eclipses
Read the Fine Print
Educational Use
Rating
0.0 stars

What is a solar eclipse and why are they only visible in some parts of the world? In this video segment adapted from NASA, astronomer Susan Stolovy uses animations to provide an answer to these questions.

Subject:
Astronomy
Chemistry
Education
Geoscience
Physical Science
Physics
Space Science
Material Type:
Activity/Lab
Diagram/Illustration
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
10/21/2005
Solar Energy
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Solar energy is radiant energy from the sun—a fully renewable energy resource. We use the solar resource to provide daylight, electricity, and heat. Solar PV is the fastest-growing electricity resource in the world. It is fully renewable with few environmental impacts, and the cheapest source of electricity in many countries.

Subject:
Physical Science
Material Type:
Module
Provider:
Stanford University
Provider Set:
Understand Energy Learning Hub
Date Added:
08/26/2024
Solar Power
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students learn how engineers use solar energy to heat buildings by investigating the thermal storage properties of some common materials: sand, salt, water and shredded paper. Students then evaluate the usefulness of each material as a thermal storage material to be used as the thermal mass in a passive solar building.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Date Added:
10/14/2015
Solar Sails: The Future of Space Travel
Read the Fine Print
Educational Use
Rating
0.0 stars

Working as if they were engineers, students design and construct model solar sails made of aluminum foil to move cardboard tube satellites through “space” on a string. Working in teams, they follow the engineering design thinking steps—empathize, define, ideate, prototype, test, redesign—to design and test small-scale solar sails for satellites and space probes. During the process, learn about Newton’s laws of motion and the transfer of energy from wave energy to mechanical energy. A student activity worksheet is provided.

Subject:
Career and Technical Education
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Matthew Bentley
Date Added:
02/07/2017
Solar Still Part I: Salt Water
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment adapted from ZOOM, cast members assemble a solar still and make fresh water from saltwater, demonstrating two steps of the water cycle, evaporation and condensation.

Subject:
Hydrology
Physical Science
Material Type:
Activity/Lab
Diagram/Illustration
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
10/21/2005
Solar Water: Heat it Up!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore energy efficiency, focusing on renewable energy, by designing and building flat-plate solar water heaters. They apply their understanding of the three forms of heat transfer (conduction, convection and radiation), as well as how they relate to energy efficiency. They calculate the efficiency of the solar water heaters during initial and final tests and compare the efficiencies to those of models currently sold on the market (requiring some additional investigation by students). After comparing efficiencies, students explain how they would further improve their devices. Students learn about the trade-offs between efficiency and cost by calculating the total cost of their devices and evaluating cost per percent efficiency and per degree change of the water.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amanda Giuliani
Darcie Chinnis
Marissa H. Forbes
Odessa Gomez
Date Added:
09/18/2014
Super Sun
Unrestricted Use
CC BY
Rating
0.0 stars

This lesson will introduce solar power, how it works, and energy storage to students through hands on materials and activities. It will also foster an understanding of renewable energy and how we can use renewable energy to power our cities.

Subject:
Elementary Education
Engineering
Environmental Science
Geology
Material Type:
Activity/Lab
Interactive
Lesson
Lesson Plan
Author:
Gonzaga Climate Institute
Date Added:
06/24/2024
The Temperature Effect
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore how the efficiency of a solar photovoltaic (PV) panel is affected by the ambient temperature. They learn how engineers predict the power output of a PV panel at different temperatures and examine some real-world engineering applications used to control the temperature of PV panels.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Eszter Horanyi
Jack Baum
Malinda Schaefer Zarske
Stephen Johnson
William Surles
Date Added:
09/18/2014
Understand Energy Learning Hub
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Stanford University’s Understand Energy Learning Hub provides free access to Stanford course content on energy resources from fossil fuels like oil and coal to renewable resources like the wind, the sun, and efficiency; energy currencies like electricity and hydrogen; and energy services such as transportation and buildings. Explore the Hub and build your energy literacy to address climate change and sustainability issues, engage on equity and human development challenges, participate in energy industry markets and technology innovations, and make informed energy decisions.

Subject:
Applied Science
Career and Technical Education
Engineering
Environmental Studies
Physical Science
Material Type:
Full Course
Author:
Stanford University Understand Energy
Date Added:
08/14/2024
Understanding Electricity with Photovoltaics
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

Sixth grade students at Eckstein Middle School use their understanding of electricity to explore electrical current in a circuit with photovoltaic cells.Using a lamp to model the sun, students work in teams and connect different power sources in series and parallel circuits to determine the effects on light bulbs or small motors. Discussion between students about the differences in voltage and the flow of electrons from negative to positive terminals provide opportunities for students to explain their learning and for the teacher to assess their understanding.Learning is extended beyond the experiment as students use photovoltaic cells to power equipment and offset electrical load in the classroom.

Subject:
Education
Physical Science
Physics
Material Type:
Lesson Plan
Teaching/Learning Strategy
Provider:
Teaching Channel
Provider Set:
Teaching Channel
Author:
Jessica Levine
Date Added:
11/02/2012
Utility Solar Thermal and Industrial Solar Processes
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Solar thermal energy is a vast renewable energy resource that has been harvested by human civilizations for centuries. Now as energy conversion technologies quickly develop, we look at solar thermal energy as a significant contributor to the future world's energy profile. Solar heat, when properly collected and stored, can provide cost-effective benefits to a wide array of industrial and residential applications. In EME 811, Solar Thermal Energy for Utilities and Industry, we talk about both the main principles of solar thermal energy conversion and some implementation scenarios, such as utilization of solar heat in buildings, solar cooling, solar desalination, solar drying, and chemical processing.

Subject:
Applied Science
Career and Technical Education
Environmental Science
Environmental Studies
Material Type:
Full Course
Provider:
Penn State College of Earth and Mineral Sciences
Author:
Lucas Witmer
Mark Fedkin
Date Added:
10/07/2019