Updating search results...

Search Resources

70 Results

View
Selected filters:
  • teaching-with-models
Sea Floor Spreading I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this introductory Excel tutorial (Activity I) students use Excel to explore the geodynamics model equation for ocean depth around a sea-floor spreading center. For students with no prior Excel experience.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Mathematics
Oceanography
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Activity and Starting Point page by R.M. MacKay. Clark College, Physics and Meteorology.
Date Added:
09/22/2022
Sea Floor Spreading II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students import ocean bathymetry data from text files, they then use Excel to graph these observations along with model prediction to assess the model's ability to simulated the observed topographic features of the North Atlantic.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Mathematics
Oceanography
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Activity and Starting Point page by R.M. MacKay. Clark College, Physics and Meteorology.
Date Added:
09/22/2022
Sea Floor Spreading II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students import ocean bathymetry data from text files, they then use Excel to graph these observations along with model prediction to assess the model's ability to simulated the observed topographic features of the North Atlantic.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Mathematics
Oceanography
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Activity and Starting Point page by R.M. MacKay. Clark College, Physics and Meteorology.
Date Added:
09/22/2022
Sinking Water: A Connection With Glaciers, Ocean Currents and Weather Patterns
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This lesson has activities where students will learn about buoyancy and explore how hot water rises and cold water sinks. As an extension and real-life application, students will see that glacial run-off is occurring at a rapid pace and the cold glacial water could potentially change ocean currents thus influencing global climates.

Subject:
Atmospheric Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Stanley Mraz
Date Added:
08/16/2012
Statistical Analysis of Lincoln
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will statistically analyze data gathered in reference to the Abraham Lincoln penny.

Subject:
Chemistry
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Date Added:
12/09/2011
String Scientific Notation/Metric System Demonstration
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Short demonstration on scientific notation by asking students to place numbers on a number line using string and notecards.

Subject:
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Erin Krueger
Date Added:
08/10/2012
Tracking the Sun: Observing the Path of the Sun Throughout the Year
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

As an on-going project, students note the position of the sun by mapping a shadow on the classroom floor. They learn about the earth's tilt and the effect of the sun's light on our seasons.

Subject:
Atmospheric Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Ellen Gevers
Date Added:
08/16/2012
Translation Simulation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This module introduces students to the basics behind translation of a messenger RNA sequence into protein. In addition to text and movies, there are interactive shockwave animations that allow students to move ribosomes and tRNAs to perform translation.

Subject:
Life Science
Material Type:
Activity/Lab
Assessment
Homework/Assignment
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Starting Point (SERC)
Author:
Scott Cooper
Date Added:
08/28/2012
Transport of heavy metals in the Clark Fork River
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an activity about transport of sediment contaminated by copper, arsenic, and other heavy metals that was deposited into the Clark Fork River channel as the result of historical mining activity. The Clark Fork River between Butte and Milltown, Montana has been the focus of several large superfund projects designed to address the impacts of this legacy of mining in the watershed. This activity is used in an introductory physical geology lab (primarily non-majors) with students who may have limited experience working with quantitative analysis and analyzing graphs.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Career and Technical Education
Chemistry
Environmental Studies
Geology
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Kathleen Harper
Date Added:
08/16/2019
Trends in Alkane Boiling Points
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is an investigation into the relationship between alkane length and boiling points. Students develop a mathematical model of this relationship and use it to make predictions and error analysis.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Paula Woods
Date Added:
12/09/2011
Unit 1: Introduction to Systems Thinking â What is a System?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This unit introduces systems and systems thinking. The unit is easily adaptable to any course and includes an introduction of terminology, motivation for using systems thinking, and practice reading, as well as interpreting and evaluating systems diagrams. Note that an Internet connection and speakers are required to play the audio file in Part 3.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Career and Technical Education
Environmental Studies
Geology
Life Science
Physical Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Karl Kreutz
Lisa Gilbert
deborah gross
Date Added:
09/08/2022
Unit 2.1: Hydrologic Impact of Land-Use Change
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, students model the impact of land-cover changes on stormwater runoff using the EPA's National Stormwater Calculator (Calculator). The students are introduced to the Calculator through a tutorial. Students are provided with a particular site -- a residential neighborhood -- and model two land-use scenarios associated with it: (1) a pre-expansion scenario that includes current forest and developed land cover, and (2) a post-expansion scenario, under which the forest cover will be developed as low-intensity residential.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Career and Technical Education
Environmental Studies
Geology
Hydrology
Life Science
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Ed Barbanell
John Ritter
Meghann Jarchow
Date Added:
03/01/2022
Unit 2.2: Mitigation Using Low Impact Development (LID) Controls
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, students model the impact of changes in land cover on stormwater runoff using the EPA's National Stormwater Calculator. Students mitigate increased stormwater runoff resulting from development with low impact development (LID) controls. Students assess the LID controls in terms of the ecosystem services that they are intended to replace and discuss alternative development designs to reduce the need for them.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Career and Technical Education
Chemistry
Environmental Studies
Geology
Hydrology
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Ed Barbanell
John Ritter
Meghann Jarchow
Date Added:
03/01/2022
Unit 2.3: Modeling Land-Use Change and Mitigation Strategies
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, students model the impact of a proposed land-use change for a local site using the EPA's National Stormwater Calculator (Calculator). Given a description of the proposed land-use change, students devise and execute a series of simulations in the Calculator that model its potential impact on stormwater retention. Using additional simulations, students explore changes to the site that utilize low impact development (LID) controls to mitigate stormwater runoff.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Career and Technical Education
Environmental Studies
Geology
Hydrology
Life Science
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Ed Barbanell
John Ritter
Meghann Jarchow
Date Added:
03/01/2022
Unit 2: Fluvial Processes that Shape the Natural Landscape
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this unit, students examine the interaction between the hydrologic cycle and rock cycle through exploring the processes of weathering, erosion, transport and deposition of sediments both in real stream systems and in a physical, table-top model of a stream. This activity focuses group thinking on: 1) identification and interpretation of patterns that define physical characteristics associated with three distinct areas of a river system and 2) the type of energy transfers that occur as sediments are eroded, transported and deposited.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Career and Technical Education
Environmental Studies
Life Science
Material Type:
Activity/Lab
Module
Simulation
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Julie Monet
Date Added:
11/11/2020
Unit 2: Mashing it up: physical models of deformation and strain
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students gain an intuitive understanding of strain and deformation through a series of physical model activities using everyday materials such as bungee cords, rubber bands, fabric, index cards, silly putty, sand, and more. Can be run to fill an entire lab session exploring multiple materials or as a shorter exercise using just rubber bands and stretchy fabric. An addendum provides mathematical content (vectors, matrices, multidimensional strain) that can be used by instructors interested in building student quantitative skills.

Show more about Online Teaching suggestions
Hide
Not online recommended: Exercise uses variety of physical models that would be hard to duplicate at home. The first part of the "basic" version of the exercise (as opposed to "extended") does use rubber bands and could potentially be done remotely.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Module
Simulation
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Vince Cronin, Baylor University (Vince_Cronin@baylor.edu) Phil Resor, Wesleyan University (presor@wesleyan.edu)
Date Added:
02/02/2022
Unit 3.2: Presentation and Reflection
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, the student groups organized at the end of Unit 3.1 will prepare presentations representing different stakeholder positions. This artifact -- Part I of the Module Summative Assessment (Microsoft Word 2007 (.docx) 25kB Sep4 16) -- can be part of a presentation to the instructor, to a panel of faculty/students, or to a "board" representing some decision-making unit (Community Council, University Board of Trustees, City/County Planning Commission). At the conclusion of this unit, students will be prompted to reflect, individually, on an ecosystem services approach to natural resources management -- Part II of the Module Summative Assessment (Microsoft Word 2007 (.docx) 23kB Sep4 16) .

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Business and Communication
Career and Technical Education
Communication
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Ed Barbanell
John Ritter
Meghann Jarchow
Date Added:
03/01/2022
Unit 3: Field Geophysical Measurements
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Near surface geophysical measurements are performed by moving sensors across the Earth's surface. Active geophysical sensors transmit a signal into the Earth and record a returned signal that contains information on the physical and chemical properties of the Earth (see Unit 2). This unit introduces the student to the basics of geophysical data acquisition using two techniques that record variations in the electrical conductivity (see Unit 2) of the Earth: [1] electrical imaging (EI), and [2] electromagnetic (EM) conductivity mapping.











Basic concept of electrical imaging measurements

Provenance: Lee Slater, Rutgers University-Newark
Reuse: This item is in the public domain and maybe reused freely without restriction.
Electrical imaging is a galvanic geophysical approach whereby electrical contact with the Earth is made directly via electrodes (typically metal stakes) that are inserted into the ground. Electromagnetic conductivity mapping is a non-contact approach whereby the physics of EM induction is used to sense changes in electrical conductivity. The advantages and disadvantages of using galvanic (EI) and non-contact (EM) techniques for measuring electrical conductivity are described. Ohm's Law is introduced and students investigate how electrical resistance measurements are related to the electrical conductivity of soils. Field implementation of both EI and EM techniques is demonstrated using surveys performed in Harrier Meadow as an example. Students investigate how variations in survey configuration parameters (e.g. electrode configuration and electrode spacing in EI, frequency and coil spacing in EM) control investigation depth (how far into the ground the signals sense) and spatial resolution (what size objects can be detected). The concept of pre-modeling a geophysical survey (i.e. running some simulations of likely effectiveness of the methods before going to the field) to evaluate expected investigation depth and sensitivity is introduced. The Excel-based Scenario Evaluator for Electrical Resistivity (SEER) tool provided by the United States Geological Survey (USGS) is used to demonstrate some key concepts.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Career and Technical Education
Chemistry
Environmental Studies
Hydrology
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Data Set
Interactive
Reading
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Compiled by Lee Slater, Rutgers University Newark (lslater@newark.rutgers.edu)
Date Added:
09/03/2022
Unit 3: Modeling a System
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This unit introduces systems modeling, which allows students to quantify and manipulate system components to create system responses. Students use a simple systems model of a bathtub to explore the effect of flow rates on system equilibrium. To complete the unit, students will need a method for creating and sharing diagrams (whiteboards, posters, etc.), and will ideally have access to free systems modeling software.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Career and Technical Education
Environmental Studies
Geology
Life Science
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Karl Kreutz
Lisa Gilbert
deborah gross
Date Added:
08/24/2020
Unit 3: The Interconnected Nature of the Atmosphere, Hydrosphere, and Biosphere
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Using a systems dynamics approach, students will work in groups to conceptualize and construct a model of the global carbon cycle considering five major Earth systems: atmosphere, hydrosphere, geosphere, cryosphere, and biosphere. The models will draw on information from the pre-class activity and invoke system features such as boundaries, stocks, flows, and control variables. Using a scenario describing a global, catastrophic event, the students will consider how new conditions change the behavior of carbon cycling in their model world. Students will use the model to explain changes in environmental variables such as permafrost cover, atmospheric gases, and global temperature, as well as feedbacks within the system.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Career and Technical Education
Education
Environmental Studies
Life Science
Material Type:
Activity/Lab
Module
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Cailin Huyck Orr
Camille Holmgren
LeeAnna Chapman
Rebecca Teed
Sam Donovan
Date Added:
09/25/2022