The "Double-O-STEM" (learner guide) curriculum consists of STEM problem-solving activities. The curriculum …
The "Double-O-STEM" (learner guide) curriculum consists of STEM problem-solving activities. The curriculum is designed around projects that empower learners to apply STEM to creatively problem-solve community issues. These include designing bike lanes, community gardens, and other exciting STEM problems.
The activities are designed for both librarians and STEM educators. The curriculum is especially aligned with the Next Generation Science Standards (NGSS (engineering; grades 3-5) and American Association of School Librarians (AASL) standards.
Please note the educator guide can be found using the following link: https://www.oercommons.org/courses/double-o-stem-educator-guide
In this virtual professional development opportunity designed for teachers, EarthGen explores two …
In this virtual professional development opportunity designed for teachers, EarthGen explores two global crises taking place concurrently - the climate crisis and COVID-19. What are the connections between the two? Why are BIPOC (Black, Indigenous, People of Color) communities disproportionately affected by both? Educators receive foundational information around climate justice, analyze the variables associated with vulnerability, exposure, and risk, and explore educational resources to bring this content into their classrooms.Contact EarthGen at info@earthgenwa.org for more information.
This task, by ClimeTime educators, is for 4th grade students. After class …
This task, by ClimeTime educators, is for 4th grade students. After class brainstorm of the causes and effects of flooding on a playground or in a local context, students will generate solutions to the problems related to the flooding. Students will select two solutions to describe how the solutions could be implemented and what factors affect the success of the solutions. Students will describe which of the two solutions they think is best and the reasons for their decision. The resource includes a student task document, teacher guide, and task facilitation slides.
Student teams are challenged to navigate a table tennis ball through a …
Student teams are challenged to navigate a table tennis ball through a timed obstacle course using only the provided unconventional “tools.” Teams act as engineers by working through the steps of the engineering design process to complete the overall task with each group member responsible to accomplish one of the obstacle course challenges. Inspired by the engineers who helped the Apollo 13 astronauts through critical problems in space, students must be innovative with the provided supplies to use them as tools to move the ball through the obstacles as swiftly as possible. Groups are encouraged to communicate with each other to share vital information. The course and tool choices are easily customizable for varied age groups and/or difficulty levels. Pre/post assessment handouts, competition rules and judging rubric are provided.
Students learn about applied forces as they create pop-up-books the art of …
Students learn about applied forces as they create pop-up-books the art of paper engineering. They also learn the basic steps of the engineering design process.
Simple machines are devices with few or no moving parts that make …
Simple machines are devices with few or no moving parts that make work easier. Students are introduced to the six types of simple machines the wedge, wheel and axle, lever, inclined plane, screw, and pulley in the context of the construction of a pyramid, gaining high-level insights into tools that have been used since ancient times and are still in use today. In two hands-on activities, students begin their own pyramid design by performing materials calculations, and evaluating and selecting a construction site. The six simple machines are examined in more depth in subsequent lessons in this unit.
Students build small-sized prototypes of mountain rescue litters rescue baskets for use …
Students build small-sized prototypes of mountain rescue litters rescue baskets for use in hard-to-get-to places, such as mountainous terrain to evacuate an injured person (modeled by a potato) from the backcountry. Groups design their litters within constraints: they must be stable, lightweight, low-cost, portable and quick to assemble. Students demonstrate their designs in a timed test during which they assemble the litter and transport the rescued person (potato) over a set distance.
The purpose of this activity is to demonstrate the importance of rocks, …
The purpose of this activity is to demonstrate the importance of rocks, soils and minerals in engineering and how using the right material for the right job is important. The students build three different sand castles and test them for strength and resistance to weathering. Then, they discuss how the buildings are different and what engineers need to think about when using rocks, soils and minerals for construction.
Simple machines are devices with few or no moving parts that make …
Simple machines are devices with few or no moving parts that make work easier, and which people have used to provide mechanical advantage for thousands of years. Students learn about the wedge, wheel and axle, lever, inclined plane, screw and pulley in the context of the construction of a pyramid, gaining insights into tools that have been used since ancient times and are still important today. Through numerous hands-on activities, students imagine themselves as ancient engineers building a pyramid. Student teams evaluate and select a construction site, design a pyramid, perform materials calculations, test a variety of cutting wedges on different materials, design a small-scale cart/lever transport system to convey building materials, experiment with the angle of inclination and pull force on an inclined plane, see how a pulley can change the direction of force, and learn the differences between fixed, movable and combined pulleys. While learning the steps of the engineering design process, students practice teamwork, creativity and problem solving.
In Unit 2 of the Explore the Salish Sea curriculum, students will …
In Unit 2 of the Explore the Salish Sea curriculum, students will review the water cycle, learn the parts of a watershed, and the effects of erosion and pollution, then learn ways of purifying these waters before they enter our streams and estuaries to safeguard these ecosystems for marine life and us. Each unit in this series contains a detailed unit plan, a slideshow, student journal, and assessments. All elements are adaptable and can be tailored to your local community.
Migration explores the routes, distances, and purposes for wildlife migration with a …
Migration explores the routes, distances, and purposes for wildlife migration with a special focus on Pacific salmon. This iconic species of the Pacific Northwest has shaped life in Salish Sea watersheds since they first entered rivers and creeks to spawn, bringing their ocean-derived nutrients in reach of land animals, plants, and people. Nearly 1/4 of the nitrogen in the leaves of our giant temperate rainforest trees once swam in the sea as salmon. They are the reason for the great natural wealth of the Salish Sea and beyond.
Learning to identify habitat needs based on their specific migrations will empower students to identify ways they can improve salmon habitat near their own schools and possibly design and carry out a salmon habitat improvement project. Reach out to salmon experts in your community for support with this unit and project, from protecting storm drains to raising salmon in the classroom. Share your salmon project story along the way. Your school may just be featured as our next Salish Sea Heroes!
Students develop and solidify their understanding of the concept of "perimeter" as …
Students develop and solidify their understanding of the concept of "perimeter" as they engage in a portion of the civil engineering task of land surveying. Specifically, they measure and calculate the perimeter of a fenced in area of "farmland," and see that this length is equivalent to the minimum required length of a fence to enclose it. Doing this for variously shaped areas confirms that the perimeter is the minimal length of fence required to enclose those shapes. Then students use the technology of a LEGO MINDSTORMS(TM) NXT robot to automate this task. After measuring the perimeter (and thus required fence length) of the "farmland," students see the NXT robot travel around this length, just as a surveyor might travel around an area during the course of surveying land or measuring for fence materials. While practicing their problem solving and measurement skills, students learn and reinforce their scientific and geometric vocabulary.
Students further their understanding of the salmon life cycle and the human …
Students further their understanding of the salmon life cycle and the human structures and actions that aid in the migration of fish around hydroelectric dams by playing an animated PowerPoint game involving a fish that must climb a fish ladder to get over a dam. They first brainstorm their own ideas, and then learn about existing ways engineers have made dams "friendlier" to migrating fish, before being quizzed as part of the game.
Students work as engineers and learn to conduct controlled experiments by changing …
Students work as engineers and learn to conduct controlled experiments by changing one experimental variable at a time to study its effect on the experiment outcome. Specifically, they conduct experiments to determine the angular velocity for a gear train with varying gear ratios and lengths. Student groups assemble LEGO MINDSTORMS(TM) NXT robots with variously sized gears in a gear train and then design programs using the NXT software to cause the motor to rotate all the gears in the gear train. They use the LEGO data logging program and light sensors to set up experiments. They run the program with the motor and the light sensor at the same time and analyze the resulting plot in order to determine the angular velocity using the provided physics-based equations. Finally, students manipulate the gear train with different gears and different lengths in order to analyze all these factors and figure out which manipulation has a higher angular velocity. They use the equations for circumference of a circle and angular velocity; and convert units between radians and degrees.
Students gain an understanding of the difference between electrical conductors and insulators, …
Students gain an understanding of the difference between electrical conductors and insulators, and experience recognizing a conductor by its material properties. In a hands-on activity, students build a conductivity tester to determine whether different objects are conductors or insulators. In another activity, students use their understanding of electrical properties to choose appropriate materials to design and build their own basic circuit switch.
Students form expert engineering teams working for the (fictional) alternative energy consulting …
Students form expert engineering teams working for the (fictional) alternative energy consulting firm, Greenewables, Inc. Each team specializes in a form of renewable energy used to generate electrical power: passive solar, solar photovoltaic, wind power, low-impact hydropower, biomass, geothermal and (for more advanced students) hydrogen fuel cells. Teams produce poster presentations making a case for their technology and produce an accompanying PDF document using Adobe Acrobat that summarizes the presentation. This activity is geared towards fifth-grade and older students, and Internet research capabilities are required. Some portions of this activity may be appropriate with younger students.
Students engage in the second design challenge of the unit, which is …
Students engage in the second design challenge of the unit, which is an extension of the maze challenge they solved in the first lesson/activity of this unit. Students extend the ideas learned in the maze challenge with a focus more on the robot design. Gears are a very important part of any machine, particularly when it has a power source such as engine or motor. Specifically, students learn how to design the gear train from the LEGO MINDSTORMS(TM) NXT servomotor to the wheel to make the LEGO taskbot go faster or slower. A PowerPoint® presentation, pre/post quizzes and a worksheet are provided.
This Educators Guide provides everything you need to make this virtual field …
This Educators Guide provides everything you need to make this virtual field trip a huge success with your students! You will find lists of materials and resources, step-by-step instructions for three complete lessons, journal prompts as well as research topics, supplementary card work, and standards mapping.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.