Updating search results...

Search Resources

2271 Results

View
Selected filters:
Cooking Cookies with Solar Power
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment adapted from ZOOM, two solar cookers are tested against a control to see which can cook a "s'more" faster.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
02/20/2004
Cooking with the Sun
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about using renewable energy from the Sun for heating and cooking as they build and compare the performance of four solar cooker designs. They explore the concepts of insulation, reflection, absorption, conduction and convection.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Geoffrey Hill
Jeff Lyng
Jessica Butterfield
Jessica Todd
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora-Thompson
Date Added:
10/14/2015
Cooking with the Sun - Creating a Solar Oven
Read the Fine Print
Educational Use
Rating
0.0 stars

Student groups are given a set of materials: cardboard, insulating materials, aluminum foil and Plexiglas, and challenged to build solar ovens. The ovens must collect and store as much of the sun's energy as possible. Students experiment with heat transfer through conduction by how well the oven is insulated and radiation by how well it absorbs solar radiation. They test the effectiveness of their designs qualitatively by baking something and quantitatively by taking periodic temperature measurements and plotting temperature vs. time graphs. To conclude, students think like engineers and analyze the solar oven's strengths and weaknesses compared to conventional ovens.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Lauren Powell
Date Added:
09/18/2014
Cool Facts about Heat
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

The author explains heat transfer and how it applies to living in extremely cold environments.

Subject:
Applied Science
Environmental Science
Geoscience
Physical Science
Technology
Material Type:
Reading
Provider:
Ohio State University College of Education and Human Ecology
Provider Set:
Beyond Penguins and Polar Bears: An Online Magazine for K-5 Teachers
Author:
Stephanie Chasteen
Date Added:
10/17/2014
Cool Puppy! A Doghouse Design Project
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are given the engineering challenge to design and build doghouses that shelter a (toy) puppy from the heat—and to create them within material, size and cost constraints. This requires them to apply what they know (or research) about light energy and how it does (or does not) travel through various materials, as well as how a material’s color affects its light absorption and reflection properties. They build their doghouse designs and test them by taking thermometer readings under hot lamps, and then think of ways to improve their designs. This is a great project for learning about light and heat: energy transfer, absorption, insulation and material properties, and easily scales up/down for size and materials.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
MakerChallenges
Author:
Brett Doudican
Cynthia Dickman
Linda Gillum
Raseena Jacob
Date Added:
06/02/2017
Cooler Design Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn and apply concepts in thermodynamics and energy—mainly convection, conduction, and radiation— to solve a challenge. This is accomplished by splitting students into teams and having them follow the engineering design process to design and build a small insulated box, with the goal of keeping an ice cube and a Popsicle from melting. Students are given a short traditional lecture to help familiarize them with the basic rules of thermodynamics and an introduction to materials science while they continue to monitor the ice within their team’s box.

Subject:
Applied Science
Engineering
Mathematics
Measurement and Data
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Laurie Salander
Date Added:
03/26/2019
Core Description, Stratigraphic Correlation, and Mapping: A capstone project for an undergraduate course in Sedimentary Geology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This project is intended as a long-term (3 weeks -- 1 month) lab exercise near the end of a combined Stratigraphy/Sedimentology course. The project utilizes real world data provided by CONSOL Energy of Pittsburgh, PA, and the West Virginia Geological and Economic Survey. This project has been assigned once and is being revised. Instructions have been left somewhat vague in an attempt to force students into discovering some of the more mechanical details of this process themselves.

By the latter third of the course, students have described sedimentary rocks in detail and have constructed vertical sections of rock at several outcrops around campus. The course is moving from Sedimentology/Petrology into Stratigraphy. This project is designed to illustrate the basic principles of lithostratigraphy, which are covered concurrently in the lecture portion of the class.

The project 'unfurls' over several weeks. If students are provided with the entire project at one time they generally get overwhelmed, so the project is presented piecemeal, allowing the students to expand the project as they complete one section.

Step 1: Core description 40 feet of core from the Conemaugh Group of southwestern Pennsylvania is made available to the students. They must describe the core, define lithologic units, identify specific sedimentary structures, and construct a stratigraphic column. (Students struggle with detail versus efficiency of completion, given one full lab period (3 hours) and a week to complete the assignment, many students will get lost in the detail)

The goal is to build familiarity with the type of data available to geologists as they go about constructing maps for resource estimates. Additionally, the lithologies present in this core will be similar to those described in the geologist and drilling logs necessary to complete the next step.

Each step is evaluated independently in this step concern is primarily with identification of basic lithologies (coal, sandstone, shale, limestone).

Step 2: construction of strip logs for 25 core holes in northern West Virginia. Students are provided with a location map, logs for 25 holes, and elevation data. They must construct strip logs suitable for correlation, deciding upon scale and detail of presentation. Students are provided with a CD including the location map and a .pdf for each drill record.

The logs vary between the simplicity of driller data (60' of "blue" shale) and the detail of geologist descriptions, students must balance the detail and simplicity. Additionally, students were faced with "long" logs (i.e. greater than 500') and "short" logs (i.e. less than 100'). This turned out to be extremely difficult, some students got very lost, producing long detailed logs that left them without much time for the last two steps.

Students are again provided with a week to construct the strip logs, including the lab time for the week. Strip logs are evaluated for detail, accuracy, and utility (in many cases too much detail can be as confusing as too little).

Step 3: construction of stratigraphic cross sections. The first time this project was assigned, there was little guidance provided to students beyond "choosing logs that covered the largest stratigraphic interval." This exceeded the grasp of most students so additional guidance will be provided in the next iteration of this project. A generalized stratigraphic column illustrating the basic characteristics of the Monongahela and Conemaugh groups will be provided to assist students with recognition of the basic formations.

Students will be required to construct a stratigraphic cross section through selected wells on the west side of the project area. This cross section will demonstrate the use of marker beds and the lateral continuity of stratigraphic units.

The second cross section will run east-west onto the western flank of the Chestnut Ridge anticline. The datum for this cross section will be surface elevation. This cross section will illustrate the problems of stratigraphic correlation when combined with geological structures. The rock becomes consistently older as one proceeds towards the axis of the anticline. The prominent red beds and the absence of coals, in the eastern portion of the map area indicate the presence of the Chestnut Ridge Anticline.

Evaluation of the cross sections will be based upon the accuracy of the correlations. Students are allowed a week to produce cross sections (including lab). The stratigraphic cross section should accurately delineate the Redstone, Pittsburgh, and Sewickley coals. These occur in sequence and are fairly easy to identify. Successful completion of the east-west cross section will require identification of the approximate stratigraphic position of the Monongahela-Conemaugh contact.

Step 4: construction of isopach maps. Students are then required to identify specific coal and sandstone units within their cross sections, correlate those across the map region and construct isopach maps of those units.

This requires that the students now extend what they have learned from the previous three weeks, extend those correlations to the core holes not included in the basic stratigraphic analysis. The thickness of the coal and sandstone should be identified and isopach maps constructed.

The first iteration of this project produced problems similar to those encountered in step 3. Better guidance and evaluation of the cross sections and allowing students less input on the choice of stratigraphic units to isopach should reduce the confusion.

Step 5: (optional) Interpretation and report writing : the first iteration of this project was running concurrently with a term paper. Instead of two separate projects, an interpretive report will be required. This is still in the planning stage and has not been assigned to students.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
David Matchen
Date Added:
08/28/2019
Cosmic Origin Spectrograph
Read the Fine Print
Educational Use
Rating
0.0 stars

This video from NASA features the Cosmic Origin Spectrograph (COS), which allows scientists to use spectrographic analysis to assess the composition of intergalactic material.

Subject:
Applied Science
Chemistry
Engineering
Geoscience
Physical Science
Physics
Space Science
Technology
Material Type:
Lesson
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media Common Core Collection
Author:
NASA
WGBH Educational Foundation
WNET
Date Added:
05/23/2012
Cost Effectiveness of Increased Fuel Efficiency
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this example students examine and critique an argument which implies that it is not cost effective to pay for an automobile with increased fuel efficiency. Using a few reasonable assumptions shows that some of the writer's quantitative claims are not very accurate.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Stuart Boersma
Date Added:
09/23/2022
The Costs of Your Commute: Your Money, Your Time, and the Earth
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity has students investigate their own cost, CO2 output, and time for commuting. They then compare their commute to an environmentally conscious alternative by using comparable metrics.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Applied Science
Biology
Environmental Science
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Charlie Buehrle
Date Added:
04/17/2018
Counting Atoms: How Not to Break the Law of Conservation of Matter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the science of microbial fuel cells (MFCs) by using a molecular modeling set to model the processes of photosynthesis and cellular respiration—building on the concept of MFCs that they learned in the associated lesson, “Photosynthesis and Cellular Respiration at the Atomic Level.” Students demonstrate the law of conservation of matter by counting atoms in the molecular modeling set. They also re-engineer a new molecular model from which to further gain an understanding of these concepts.

Subject:
Applied Science
Chemistry
Engineering
Life Science
Mathematics
Measurement and Data
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Kamryn Jenkins
Tuyen Duddles
Weiyang Yang
Wen Li
Date Added:
08/27/2018
Course documents for Environmental Science 173: Geological Perspectives
Unrestricted Use
CC BY
Rating
0.0 stars

Course outline and reading list; spreadsheet with list of readings by topic with licensing info for each.

Course Description:
Covers environmental topics that are primarily geological in nature. Includes geology basics, soil resources, hydrogeology, nonrenewable mineral and energy resources, perpetual energy resources, and solid waste. The associated laboratories will illustrate these topics and may include fieldwork.

Upon completion of the course students should be able to:

Express graphically, orally or in writing, basic elements of environmental earth-sciences.
Identify and express geological interactions of humans and the environment.
Utilize field and laboratory methods/technologies to measure and describe environmental factors.
Demonstrate an understanding of geologic time scales and processes.

Subject:
Applied Science
Environmental Science
Material Type:
Reading
Author:
Taryn Oakley
Date Added:
03/03/2020
Course documents for PHY 201: General Physics (Algebra) I
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Folder with syllabus and course outline for General Physics (Algebra) I course that uses Openstax College Physics as textbook (https://openstax.org/details/books/college-physics).

This course covers classical mechanics, which essentially means the physics of forces and motion that was developed before the start of the 20 th century. This physics accurately describes the behaviors of objects that are: large enough to be seen with microscopes but smaller than planets or moons, roughly room temperature (give or take a few hundred degrees), and traveling much slower than the speed of light—in other words, most of our everyday experience.

The classical mechanics covered in this course can be boiled down to seven key concepts: Newton’s three laws of motion, the law of universal gravitation, and the laws of conservation of momentum, energy, and angular momentum. We’ll be focusing on these central ideas and how they apply to practical examples.

Course Content and Outcomes
After completion of this course, students will
1) Apply knowledge of motion, forces, energy, and circular motion to explain natural physical processes and related technological advances.
2) Use an understanding of calculus along with physical principles to effectively solve problems encountered in everyday life, further study in science, and in the professional world.
3) Design experiments and acquire data in order to explore physical principles, effectively communicate results, and critically evaluate related scientific studies.
4) Assess the contributions of physics to our evolving understanding of global change and sustainability while placing the development of physics in its historical and cultural context.

Subject:
Physical Science
Physics
Material Type:
Syllabus
Author:
John Allan
Date Added:
03/09/2020
Cozied up cell parts help flies with Alzheimer’s-like symptoms live longer
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Alzheimer’s disease is a progressive brain disorder that gradually destroys memory and thinking skills Every year, the number of people affected by the disease continues to grow That has some researchers looking to the fruit fly for answers One team has found that linking two parts of the cell closer together may help Linking the endoplasmic reticulum, which forms proteins and stores calcium to the mitochondria, which power the cell can actually improve motor function in fruit flies and help them live longer This technique works in flies with brain plaques similar to those found in humans with Alzheimer’s disease Part of the reason could be improved access to calcium Forcing the organelles together helps calcium migrate more easily from the endoplasmic reticulum to the mitochondria This sends the mitochondria into overdrive because calcium acts as a lubricant for the mitochondrial machinery that pumps out energy So easy access to calcium means more energy output Clarifying how that transl.."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
12/23/2019
Crafting a Sustainability Message
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will do background reading and research local energy production, historical patterns, and alternative energy possibilities for this area. Their task is to create a display board that can convey their research and promote education about local energy production to k-12 students. The message must also convey opportunities for youth in energy-related fields by staying in school.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Martha Henderson
Date Added:
08/11/2019
Creating Biofuel and Mitigating Waste
Read the Fine Print
Rating
0.0 stars

In this activity students make biodiesel from waste vegetable oil and develop a presentation based on their lab experience. Parts of the activity include creation of bio-diesel from clean vegetable oil, creation of bio-diesel from waste vegetable oil, chemical analysis of biodiesel, purification of biodiesel, and creation of soap from glycerin.

Subject:
Applied Science
Career and Technical Education
Environmental Science
Environmental Studies
Geoscience
Physical Science
Technology
Material Type:
Activity/Lab
Provider:
CLEAN: Climate Literacy and Energy Awareness Network
Provider Set:
CLEAN: Climate Literacy and Energy Awareness Network
Author:
ACTS, US Department Of Energy, Energy Education and Workforce Development
Matthew A. Brown and Raymond I. Quintana
Date Added:
10/27/2014
Creating a Partial Pressure Diagram for the Cu-CO2-O2-H2O System
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will be guided through the procedure for creating a partial-pressure diagram in the low-temperature system Cu-CO2-O2-H2O system for the minerals cuprite, tenorite, native copper, azurite, and malachite. They will write chemical reactions and use Gibbs Free Energies to calculate Log K and plot lines on a graph with axes Log P CO2 and Log PO2 for stability boundaries between minerals. They are provided with data to then create their own diagram for the Fe-CO2-O2 system.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Terri Woods
Date Added:
08/29/2022
Creative Problem Solving and Decision making
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Explore complex, multi-actor systems in which one factor influences all other factors. For instance, how innovative energy technologies merge into the existing energy system, or how new transport possibilities impact current processes. Armed with this information, learn to decide whether they should be further developed, consider possible negative results and weigh associated costs.

There are multiple ways to make decisions, but one way proven to be very useful is the analytical approach – a methodology for making the problem explicit and rationalising the different potential solutions. In short: analysis based support of decision making, design and implementation of solutions.

Creative Problem Solving and Decision Making as a course teaches you this method.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
TU Delft OpenCourseWare
Author:
Dr.ir. C. van Daalen
Prof. A. de Haan
Date Added:
07/31/2018
CurvedLand: An Applet to Simulate Curved Space
Unrestricted Use
CC BY
Rating
0.0 stars

CurvedLand is an applet for showing what the world would look like with different geometry. It is named CurvedLand in tribute to the science fiction novel, Flatland, by Edwin Abbott, which describes the adventures of a two-dimensional being who is visited by a stranger from the third dimension.

One of the central ideas of Einstein's theory of relativity is that space and time curve in response to the matter and energy within them. A curved space is one that doesn't obey the usual laws of Euclidean geometry: the angles of a triangle don't generally add up to 180 degrees, the circumference of a circle isn't pi times the diameter, parallel lines can either converge towards each other or move apart, and so on.

Since the geometry we observe is very close to Euclidean, however, it is hard for most of us to picture what this difference would mean physically. If you draw a circle and a diameter, how could the ratio be anything other than pi? To answer this question, imagine that as you move around in space the shapes of objects appear to distort. This is what happens in curved space. If you draw a circle around yourself and then start walking around it to pace out the circumference, it will look to you like you are walking along a constantly changing ellipse.

CurvedLand illustrates this distortion as it would appear in a two-dimensional curved space. The structure is similar to a mapping program. You can place objects of different shapes in different places in the world and then move around the space to see what they look like from different perspectives.

Subject:
Applied Science
Computer Science
Geometry
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Smith College
Author:
Gary Felder
Stephanie Erickson
Date Added:
07/29/2020