Updating search results...

Search Resources

186 Results

View
Selected filters:
  • motion
"Gaitway" to Acceleration: Walking Your Way to Acceleration
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams use sensors—motion detectors and accelerometers—to collect walking gait data from group members. They import their collected position and acceleration data into Excel® for graphing and analysis to discover the relationships between position, velocity and acceleration in the walking gaits. Then they apply their understanding of slopes of secant lines and Riemann sums to generate and graph additional data. These activities provide practice in the data collection and analysis of systems, similar to the work of real-world engineers.

Subject:
Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Jeremy Scheffler
Date Added:
10/14/2015
Galileo: His Place in Science
Read the Fine Print
Educational Use
Rating
0.0 stars

Einstein called Galileo the "father of modern physics." This media-rich essay from the NOVA Web site looks at Galileo's quest to understand the mathematics of motion.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
01/29/2004
General Physics Remote Lab Manual
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This remote learning lab manual was created to guide students in 200-level introductory/general physics courses toward meeting the first outcome in the science category of the Associate of Arts Oregon Transfer Degree:

Gather, comprehend, and communicate scientific and technical information in order to explore ideas, models, and solutions and generate further questions.

The lab design goal was to adapt existing F2F labs (already aligned to AAOT science outcome #1) for a remote learning environment without abandoning the pedagogical advantages provided by combining guided inquiry methods with specialized physics education equipment, such as digital sensors and unique demonstration apparatus. Therefore, many of the labs contain embedded videos of experiments being performed and links to open-access Google spreadsheets containing the data produced by equipment during the experiments. In many cases overlay effects have been added to videos to provide additional experimental parameters, direct students’ attention to important occurrences, or and assist with understanding of the experimental methods. The data in the spreadsheets has been edited to remove irrelevant data (e.g. acceleration data automatically collected by lab software before the release of a moving fan cart).
Students gain experience with well established physics concepts by applying them to create models used to make predictions. The need for assumptions in creating a model is explicitly addressed and students are asked to think critically about the affect of various assumptions on the validity of models in different situations. As in research science, experimental data are analyzed in order to produce results for comparison to prediction. Students are asked to think critically about differences between predictions and results in the context of model assumptions and measurement uncertainty

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
OpenOregon
Author:
Lawrence Davis
Date Added:
06/17/2021
Graphing 1D Kinematic Motion
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this demonstration students are given a position, velocity or acceleration graph showing the motion of an object. They are asked to write a short description of the motion, and make predictions by completing the remaining two graphs.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Aaron Larson
Date Added:
12/09/2011
Gravity Force Lab
Unrestricted Use
CC BY
Rating
0.0 stars

Visualize the gravitational force that two objects exert on each other. Change properties of the objects in order to see how it changes the gravity force.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Noah Podolefsky
Sam Reid
Trish Loeblein
Date Added:
11/12/2010
Gravity Force Lab (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Visualize the gravitational force that two objects exert on each other. Change properties of the objects in order to see how it changes the gravity force.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Noah Podolefsky
Patricia Loblein
Sam Reid
Date Added:
02/02/2013
Gravity and Bottle Flipping
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is designed to support a variety of STEM concepts: scientific method, making predictions, gathering and analyzing data, and developing conclusions based on experimentation. This activity draws on active student engagement, and is useful in many STEM content areas.

Subject:
Mathematics
Measurement and Data
Physical Science
Physics
Material Type:
Activity/Lab
Date Added:
09/26/2018
Gravity and Bottle Flipping
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is designed to support a variety of STEM concepts: scientific method, making predictions, gathering and analyzing data, and developing conclusions based on experimentation. This activity draws on active student engagement, and is useful in many STEM content areas.

Subject:
Mathematics
Measurement and Data
Physical Science
Physics
Material Type:
Activity/Lab
Date Added:
04/30/2021
Gravity and Bottle Flipping
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is designed to support a variety of STEM concepts: scientific method, making predictions, gathering and analyzing data, and developing conclusions based on experimentation. This activity draws on active student engagement, and is useful in many STEM content areas.

Subject:
Mathematics
Measurement and Data
Physical Science
Physics
Material Type:
Activity/Lab
Date Added:
05/07/2021
Gravity and Orbits
Unrestricted Use
CC BY
Rating
0.0 stars

Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!

Subject:
Astronomy
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Emily Moore
John Blanco
Jon Olson
Kathy Perkins
Noah Podolefsky
Sam Reid
Trish Loeblein
Date Added:
02/07/2011
Gravity and Orbits (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!

Subject:
Astronomy
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Emily Moore
John Blanco
Jon Olson
Kathy Perkins
Noah Podolefsky
Patricia Loblein
Sam Reid
Date Added:
02/07/2011
Gravity at Earth's Center
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment from NOVA scienceNOW, learn about the effects of gravity as astrophysicist Neil deGrasse Tyson falls through a virtual hole through Earth's center.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Lecture
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
The William and Flora Hewlett Foundation
WGBH Educational Foundation
Date Added:
08/26/2008
High School Physics
Unrestricted Use
CC BY
Rating
0.0 stars

This Physics resource was developed under the guidance and support of experienced high school teachers and subject matter experts. It is presented here in multiple formats: PDF, online, and low-cost print. Beginning with an introduction to physics and scientific processes and followed by chapters focused on motion, mechanics, thermodynamics, waves, and light, this book incorporates a variety of tools to engage and inspire students. Hands-on labs, worked examples, and highlights of how physics is applicable everywhere in the natural world are embedded throughout the book, and each chapter incorporates a variety of assessment types such as practice problems, performance tasks, and traditional multiple choice items. Additional instructor resources are included as well, including direct instruction presentations and a solutions manual.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
Paul Peter Urone
Roger Hinrichs
Date Added:
02/18/2021
Houston, We Have a Problem!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply their mathematics and team building skills to explore the concept of rocketry. They learn about design issues faced by aerospace engineers when trying to launch rocketships or satellites in order to land them safely in the ocean, for example. Students learn the value of designing within constraints while brainstorming a rocketry system using provided materials and a specified project budget. Throughout the design process, teamwork is emphasized since the most successful launches occur when groups work effectively to generate creative ideas and solutions to the rocket challenge.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Rohde
Don McGowan
Date Added:
09/18/2014
Hovercraft Racers!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students gain first-hand experience on how friction affects motion. They build a hovercraft using air from a balloon to levitate a craft made from a compact disc (CD), learning that a bed of air under an object significantly reduces the friction as it slides over a surface.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
How and Where Things Move
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students explore a variety of objects to discover the many ways the objects move and what force makes them move.

Subject:
Applied Science
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Sharon Vick
Date Added:
10/04/2011
Interactive Physics Demos
Unrestricted Use
CC BY
Rating
0.0 stars

These Interactive Physics Demonstrations were developed by MAJ James Bowen, MAJ Cathleen Barker, MAJ Andrew Wilhelm, and others at the United States Military Academy for their University Physics course. Each activity is presented as a worksheet, which guides students through an experimental or observational process with questions.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Date Added:
11/22/2019
Into the Swing of Things
Read the Fine Print
Educational Use
Rating
0.0 stars

After watching a 1940 film clip of the "Galloping Gertie" bridge collapse and a teacher demo with a simple pendulum, student groups discuss and then research the idea of motion that repeats itself specifically the concepts of periodic and harmonic motion. They become aware of where and how these types of motion occur and affect them in everyday applications, both natural (seasons, tides, waves) and engineered (swings, clocks, mechanical systems). They learn the basic properties of this type of motion (period, amplitude, frequency) and how the rearrangement of the simple pendulum equation can be used to solve for gravitational acceleration, pendulum length and gravity. At lesson end, students are ready to conduct the associated activity during which they conduct experiments that utilize swinging Android® devices as pendulums.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Doug Bertelsen
Date Added:
09/18/2014
Introduction to Mechanics
Unrestricted Use
CC BY
Rating
0.0 stars

This course will survey physics concepts and their respective applications; it is intended as a basic introduction to the current physical understanding of our universe. In this course, the student will study physics from the ground up, learning the basic principles of physical law, their application to the behavior of objects, and the use of the scientific method in driving advances in this knowledge. This course focuses on Newtonian mechanics--how objects move and interact--rather than Electromagnetism or Quantum Mechanics. While mathematics is the language of physics, the student need only be familiar with high school-level algebra, geometry, and trigonometry; the small amount of additional math needed will be developed during the course. (Physics 101; See also: Biology 109, Chemistry 001, Mechanical Engineering 005)

Subject:
Mathematics
Physical Science
Physics
Trigonometry
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
11/16/2011