Updating search results...

Search Resources

132 Results

View
Selected filters:
  • heat
Masses & Springs (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Michael Dubson
Wendy Adams
Date Added:
08/02/2009
Measuring and Comparing Temperatures
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity is an inquiry lesson where students learn how to accurately read a thermometer and then set up an investigation to compare the temperatures of different materials or locations.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Kathy Ahrndt
Date Added:
08/16/2012
Measuring the heat capacity of an engine coolant.
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

As an analytical chemist at a company developing new engine coolants your task is to determine the heat capacity of a newly developed product and then to determine if its heat capacity is greater of less than that of ethylene glycol.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Provider:
Carnegie Mellon University
Provider Set:
The ChemCollective
Date Added:
02/05/2021
Microwaves
Unrestricted Use
CC BY
Rating
0.0 stars

How do microwaves heat up your coffee? Adjust the frequency and amplitude of microwaves. Watch water molecules rotating and bouncing around. View the microwave field as a wave, a single line of vectors, or the entire field.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Ron LeMaster
Wendy Adams
Date Added:
11/15/2007
Microwaves (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

How do microwaves heat up your coffee? Adjust the frequency and amplitude of microwaves. Watch water molecules rotating and bouncing around. View the microwave field as a wave, a single line of vectors, or the entire field.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Ron LeMaster
Wendy Adams
Date Added:
07/01/2004
Newton's Law of Cooling
Read the Fine Print
Educational Use
Rating
0.0 stars

Students come to see the exponential trend demonstrated through the changing temperatures measured while heating and cooling a beaker of water. This task is accomplished by first appealing to students' real-life heating and cooling experiences, and by showing an example exponential curve. After reviewing the basic principles of heat transfer, students make predictions about the heating and cooling curves of a beaker of tepid water in different environments. During a simple teacher demonstration/experiment, students gather temperature data while a beaker of tepid water cools in an ice water bath, and while it heats up in a hot water bath. They plot the data to create heating and cooling curves, which are recognized as having exponential trends, verifying Newton's result that the change in a sample's temperature is proportional to the difference between the sample's temperature and the temperature of the environment around it. Students apply and explore how their new knowledge may be applied to real-world engineering applications.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Karl Abdelnour
Nicole Abaid
Robert Eckhardt
Date Added:
09/18/2014
Observing, Describing and Measuring Changing Physical Properties: Making Ice Cream
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students will use science skills of observing, describing and measuring in the context of Making Ice Cream. Students will understand the concept that physical properties can change.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Simulation
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Patricia Phillips
Date Added:
10/04/2011
Physics I: Classical Mechanics with an Experimental Focus
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Physics I is a first-year physics course which introduces students to classical mechanics. This course has a hands-on focus, and approaches mechanics through take-home experiments. Topics include: kinematics, Newton’s laws of motion, universal gravitation, statics, conservation laws, energy, work, momentum, and special relativity.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Dourmashkin, Peter
Scholberg, Kate
Date Added:
09/01/2002
Physics and Chemistry of the Terrestrial Planets
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces the structure, composition, and physical processes governing the terrestrial planets, including their formation and basic orbital properties. Topics include plate tectonics, earthquakes, seismic waves, rheology, impact cratering, gravity and magnetic fields, heat flux, thermal structure, mantle convection, deep interiors, planetary magnetism, and core dynamics. Suitable for majors and non-majors seeking general background in geophysics and planetary structure.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Royden, Leigh
Weiss, Benjamin
Date Added:
09/01/2008
Physics and Chemistry of the Terrestrial Planets
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

"This course introduces the structure, composition, and physical processes governing the terrestrial planets, including their formation and basic orbital properties. Topics include plate tectonics, earthquakes, seismic waves, rheology, impact cratering, gravity and magnetic fields, heat flux, thermal structure, mantle convection, deep interiors, planetary magnetism, and core dynamics. Suitable for majors and non-majors seeking general background in geophysics and planetary structure."

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Benjamin Weiss
Leigh Royden
Date Added:
01/01/2008
Physics of a Changing Climate: Energy Conservation and Transfer
Unrestricted Use
Public Domain
Rating
0.0 stars

Developed within Northwest Educational Service District's 2019-20 ClimeTime climate science teacher education proviso grant, this workshop is an opportunity for teachers to gain a better understanding of the physics that drive the climate system and the ocean circulation as well as the implications of a changing climate.

This course is an opportunity for teachers to gain a better understanding of the physics that drive the climate system and the ocean circulation as well as the implications of a changing climate.

The first module encompasses Earth’s radiation balance and the transfer of energy.

The second gives an overview of the ocean circulation, which accomplishes energy (heat) transport. There will be a demo to illustrate the importance of density in the circulation and the vertical structure of the ocean.

The third module discusses the greenhouse effect and global climate change, along with how ocean circulation impacts climate and how a changing climate might impact the ocean circulation.

Lastly, we demo a simple climate model coded in Excel that predicts global mean temperature change.

Subject:
Physical Science
Material Type:
Activity/Lab
Author:
Sarah Ragen
Date Added:
07/30/2020
Pie-Pan Convection
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, students observe fluid motion and the formation of convection cells as a solution of soap and water is heated. This procedure can be performed as a demonstration by the teacher, or older students can conduct the experiment themselves. A list of materials, instructions, and a description of the convective process are included.

Subject:
Astronomy
Atmospheric Science
Chemistry
Geoscience
Physical Science
Physics
Space Science
Material Type:
Interactive
Lecture Notes
Simulation
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
03/10/2005
Popping up Some Fun!
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this hands-on science lesson, the students will observe (and eat!) cooked popcorn and uncooked popcorn. The students will understand why popcorn pops. The students will weigh cooked and uncooked popcorn to understand why cooked popcorn weighs more.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Date Added:
11/06/2014
Radiant Energy Flow
Read the Fine Print
Rating
0.0 stars

How does energy flow in and out of our atmosphere? Explore how solar and infrared radiation enters and exits the atmosphere with an interactive model. Control the amounts of carbon dioxide and clouds present in the model and learn how these factors can influence global temperature. Record results using snapshots of the model in the virtual lab notebook where you can annotate your observations.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Data Set
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Relative Humidity Measurement
Read the Fine Print
Rating
0.0 stars

Measure relative humidity in the air using a simple device made of a temperature sensor, a plastic bottle, and some clay. Electronically plot the data you collect on graphs to analyze and learn from it. Experiment with different materials and different room temperatures in order to explore what affects humidity.

Subject:
Atmospheric Science
Chemistry
Geoscience
Mathematics
Physical Science
Physics
Space Science
Material Type:
Activity/Lab
Diagram/Illustration
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/12/2011
Reversible Reactions
Unrestricted Use
CC BY
Rating
0.0 stars

Watch a reaction proceed over time. How does total energy affect a reaction rate? Vary temperature, barrier height, and potential energies. Record concentrations and time in order to extract rate coefficients. Do temperature dependent studies to extract Arrhenius parameters. This simulation is best used with teacher guidance because it presents an analogy of chemical reactions.

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Jack Barbera
Linda Koch
Ron LeMaster
Wendy Adams
Date Added:
09/01/2005
Reversible Reactions (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Watch a reaction proceed over time. How does total energy affect a reaction rate? Vary temperature, barrier height, and potential energies. Record concentrations and time in order to extract rate coefficients. Do temperature dependent studies to extract Arrhenius parameters. This simulation is best used with teacher guidance because it presents an analogy of chemical reactions.

Subject:
Chemistry
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Jack Barbera
Linda Koch
Ron LeMaster
Wendy Adams
Date Added:
09/02/2009
Rock Jeopardy!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students reinforce their understanding of rocks, the rock cycle, and geotechnical engineering by playing a trivia game. They work in groups to prepare Jeopardy-type trivia questions (answers) and compete against each other to demonstrate their knowledge of rocks and engineering.

Subject:
Applied Science
Engineering
Geology
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Denise W. Carlson
Kate Beggs
Kristin Field
Malinda Schaefer Zarske
Date Added:
10/14/2015
S1 E6: TIL about climate impacts
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

With climate change, some parts of the world will get more water, but others will experience droughts. Some will start seeing more mosquitoes, but some fewer. And some regions might actually benefit economically. What’s the deal? In this episode of TILclimate (Today I Learned: Climate), MIT professor Elfatih Eltahir joins host Laur Hesse Fisher to talk about how climate impacts will differ across the globe. Together, they do a quick world tour, exploring how climate change will affect malaria in Africa, water availability in the Nile, and heat waves in Southern Asia.

Subject:
Atmospheric Science
Physical Science
Material Type:
Lesson
Provider:
MIT
Provider Set:
TILclimate Educator Hub
Date Added:
06/22/2022