Updating search results...

Search Resources

56 Results

View
Selected filters:
  • Concord Consortium Collection
Atoms and Conservation of Energy
Read the Fine Print
Rating
0.0 stars

In this activity, students will explore how the Law of Conservation of Energy (the First Law of Thermodynamics) applies to atoms, as well as the implications of heating or cooling a system. This activity focuses on potential energy and kinetic energy as well as energy conservation. The goal is to apply what is learned to both our human scale world and the world of atoms and molecules.

Subject:
Applied Science
Chemistry
Computing and Information
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Full Course
Interactive
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
06/20/2008
Baggie Chemistry
Read the Fine Print
Rating
0.0 stars

In this experiment, two chemicals that can be found around the house will be mixed within a plastic baggie, and several chemical changes will be observed.

Subject:
Chemistry
Geoscience
Physical Science
Physics
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/12/2011
Bridges
Read the Fine Print
Rating
0.0 stars

Bridges come in a wide variety of sizes, shapes, and lengths and are found all over the world. It is important that bridges are strong so they are safe to cross. Design and build a your own model bridge. Test your bridge for strength using a force sensor that measures how hard you pull on your bridge. By observing a graph of the force, determine the amount of force needed to make your bridge collapse.

Subject:
Applied Science
Chemistry
Engineering
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
05/21/2012
Build and Test a Model Solar House
Read the Fine Print
Rating
0.0 stars

Construct and measure the energy efficiency and solar heat gain of a cardboard model house. Use a light bulb heater to imitate a real furnace and a temperature sensor to monitor and regulate the internal temperature of the house. Use a bright bulb in a gooseneck lamp to model sunlight at different times of the year, and test the effectiveness of windows for passive solar heating.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Assessment
Diagram/Illustration
Lecture Notes
Student Guide
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
05/16/2012
Building a Bungee Jump
Read the Fine Print
Rating
0.0 stars

A bungee jump involves jumping from a tall structure while connected to a large elastic cord. Design a bungee jump that is "safe" for a hard-boiled egg. Create a safety egg harness and connect it to a rubber band, which is your the "bungee cord." Finally, attach your bungee cord to a force sensor to measures the forces that push or pull your egg.

Subject:
Applied Science
Chemistry
Education
Engineering
Geoscience
Life Science
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
05/21/2012
Building a Zip Line
Read the Fine Print
Rating
0.0 stars

A zip line is a way to glide from one point to another while hanging from a cable. Design and create a zip line that is safe for a hard-boiled egg. After designing a safety egg harness, connect the harness to fishing line or wire connected between two chairs of different heights using a paper clip. Learn to improve your zip line based on data. Attach a motion sensor at the bottom of your zip line and display a graph to show how smooth a ride your egg had!

Subject:
Applied Science
Chemistry
Engineering
Mathematics
Physical Science
Physics
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
05/21/2012
Buildings and Earthquakes
Read the Fine Print
Rating
0.0 stars

Earthquakes happen when forces in the Earth cause violent shaking of the ground. Earthquakes can be very destructive to buildings and other man-made structures. Design and build various types of buildings, then test your buildings for earthquake resistance using a shake table and a force sensor that measures how hard a force pushes or pulls your building.

Subject:
Applied Science
Education
Engineering
Geoscience
Physical Science
Space Science
Technology
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
05/21/2012
Catalysts
Read the Fine Print
Rating
0.0 stars

There are two types of catalysis reactions: homogeneous and heterogeneous. In a homogeneous reaction, the catalyst is in the same phase as the reactants. In a heterogeneous reaction, the catalyst is in a different phase from the reactants. This activity addresses homogeneous catalysis.

Subject:
Chemistry
Education
Physical Science
Physics
Material Type:
Data Set
Diagram/Illustration
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Cellular Respiration
Read the Fine Print
Rating
0.0 stars

Cellular respiration is the process by which our bodies convert glucose from food into energy in the form of ATP (adenosine triphosphate). Start by exploring the ATP molecule in 3D, then use molecular models to take a step-by-step tour of the chemical reactants and products in the complex biological processes of glycolysis, the Krebs cycle, the Electron Transport Chain, and ATP synthesis. Follow atoms as they rearrange and become parts of other molecules and witness the production of high-energy ATP molecules.

Subject:
Life Science
Material Type:
Lecture Notes
Simulation
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
01/13/2012
Competition
Read the Fine Print
Rating
0.0 stars

Explore a NetLogo model of populations of rabbits, grass, and weeds. First, adjust the model to start with a different rabbit population size. Then adjust model variables, such as how fast the plants or weeds grow, to get more grass than weeds. Change the amount of energy the grass or weeds provide to the rabbits and the food preference. Use line graphs to monitor the effects of changes you make to the model, and determine which settings affect the proportion of grass to weeds when rabbits eat both.

Subject:
Ecology
Education
Forestry and Agriculture
Geoscience
Life Science
Physical Science
Material Type:
Activity/Lab
Data Set
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
01/13/2012
Concord Consortium: Atomic Structure
Read the Fine Print
Rating
0.0 stars

This interactive, scaffolded activity allows students to build an atom within the framework of a newer orbital model. It opens with an explanation of why the Bohr model is incorrect and provides an analogy for understanding orbitals that is simple enough for grades 8-9. As the activity progresses, students build atoms and ions by adding or removing protons, electrons, and neutrons. As changes are made, the model displays the atomic number, net charge, and isotope symbol. Try the "Add an Electron" page to build electrons around a boron nucleus and see how electrons align from lower-to-higher energy. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The Concord Consortium develops deeply digital learning innovations for science, mathematics, and engineering. The models are all freely accessible. Users may register for additional free access to capture data and store student work products.

Subject:
Applied Science
Chemistry
Physical Science
Physics
Technology
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
05/06/2011
Concord Consortium: Chemical Bonds
Read the Fine Print
Rating
0.0 stars

This interactive activity helps learners visualize the role of electrons in the formation of ionic and covalent chemical bonds. Students explore different types of chemical bonds by first viewing a single hydrogen atom in an electric field model. Next, students use sliders to change the electronegativity between two atoms -- a model to help them understand why some atoms are attracted. Finally, students experiment in making their own models: non-polar covalent, polar covalent, and ionic bonds. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Applied Science
Chemistry
Physical Science
Physics
Technology
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
05/16/2011
Concord Consortium: Electric Current
Read the Fine Print
Rating
0.0 stars

This 90-minute activity features six interactive molecular models to explore the relationships among voltage, current, and resistance. Students start at the atomic level to explore how voltage and resistance affect the flow of electrons. Next, they use a model to investigate how temperature can affect conductivity and resistivity. Finally, they explore how electricity can be converted to other forms of energy. The activity was developed for introductory physics courses, but the first half could be appropriate for physical science and Physics First. The formula for Ohm's Law is introduced, but calculations are not required. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The Concord Consortium develops deeply digital learning innovations for science, mathematics, and engineering.

Subject:
Applied Science
Chemistry
Education
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Data Set
Diagram/Illustration
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
03/10/2013
Concord Consortium: Excited States and Photons
Read the Fine Print
Rating
0.0 stars

This concept-building activity contains a set of sequenced simulations for investigating how atoms can be excited to give off radiation (photons). Students explore 3-dimensional models to learn about the nature of photons as "wave packets" of light, how photons are emitted, and the connection between an atom's electron configuration and how it absorbs light. Registered users are able to use free data capture tools to take snapshots, drag thumbnails, and submit responses. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Applied Science
Chemistry
Education
Engineering
Life Science
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
08/21/2012
Concord Consortium: Making and Breaking Bonds
Read the Fine Print
Rating
0.0 stars

In this interactive activity, learners explore factors that cause atoms to form (or break) bonds with each other. The first simulation depicts a box containing 12 identical atoms. Using a slider to add heat, students can see the influence of temperature on formation of diatomic bonds. Simulations #2 and #3 introduce learners to reactions involving two types of atoms. Which atom forms a diatomic molecule more easily, and why? The activity concludes as students explore paired atoms (molecules). In this simulation they compare the amount of energy needed to break the molecular bonds to the energy needed to form the bonds. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Applied Science
Chemistry
Physical Science
Physics
Technology
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
05/16/2011
Concord Consortium: Probability Clouds
Read the Fine Print
Rating
0.0 stars

In this interactive activity, learners build computer models of atoms by adding or removing electrons, protons, and neutrons. It presents the orbital model of an atom: a nucleus consisting of protons and neutrons with electrons surrounding it in regions of high probability called orbitals. Guided tasks are provided, such as constructing a lithium atom and a carbon-12 atom in the fewest possible steps. The activity concludes with a model for building a charged hydrogen atom (an ion). Within each task, students take snapshots of their work product and answer probative questions. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Technology
Material Type:
Lesson
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
National Science Foundation
The Concord Consortium
Date Added:
05/17/2011
Concord Consortium: Solar Oven
Read the Fine Print
Rating
0.0 stars

Elementary grade students investigate heat transfer in this activity to design and build a solar oven, then test its effectiveness using a temperature sensor. It blends the hands-on activity with digital graphing tools that allow kids to easily plot and share their data. Included in the package are illustrated procedures and extension activities. Note Requirements: This lesson requires a "VernierGo" temperature sensing device, available for ~ $40. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The Consortium develops digital learning innovations for science, mathematics, and engineering.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
04/02/2013
Conflicting Selection Pressures
Read the Fine Print
Rating
0.0 stars

Explore how populations change over time in a NetLogo model of sheep and grass. Experiment with the initial number of sheep, the sheep birthrate, the amount of energy sheep gain from the grass, and the rate at which the grass re-grows. Remove sheep that have a particular trait (better teeth) from the population, then watch what happens to the sheep teeth trait in the population as a whole. Consider conflicting selection pressures to make predictions about other instances of natural selection.

Subject:
Ecology
Education
Forestry and Agriculture
Geoscience
Life Science
Physical Science
Material Type:
Activity/Lab
Data Set
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
01/13/2012
DNA to Protein
Read the Fine Print
Rating
0.0 stars

Explore the relationship between the genetic code on the DNA strand and the resulting protein and rudimentary shape it forms. Through models of transcription and translation, you will discover this relationship and the resilience to mutations built into our genetic code. Start by exploring DNA's double helix with an interactive 3D model. Highlight base pairs, look at one or both strands, and turn hydrogen bonds on or off. Next, watch an animation of transcription, which creates RNA from DNA, and translation, which 'reads' the RNA codons to create a protein.

Subject:
Genetics
Life Science
Material Type:
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
01/13/2012
Dew Point
Read the Fine Print
Rating
0.0 stars

Determine the dew point temperature for your classroom through a hands-on experiment. Use humidity and temperature probes to investigate the temperature at which it would rain in your classroom! Learn about water density and the conditions necessary to produce fog or rain.

Subject:
Atmospheric Science
Geoscience
Mathematics
Physical Science
Physics
Space Science
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/13/2011