Edited by Sarah Hare, Jessica Kirschner, and Michelle Reed Short Description: This …
Edited by Sarah Hare, Jessica Kirschner, and Michelle Reed
Short Description: This collaboratively authored guide helps institutions navigate the uncharted waters of tagging course material as open educational resources (OER) or under a low-cost threshold by summarizing relevant state legislation, providing tips for working with stakeholders, and analyzing technological and process considerations. The first half of the book provides high-level analysis of the technology, legislation, and cultural change needed to operationalize course markings. The second half features case studies by Alexis Clifton, Rebel Cummings-Sauls, Michael Daly, Juville Dario-Becker, Tony DeFranco, Cindy Domaika, Ann Fiddler, Andrea Gillaspy Steinhilper, Rajiv Jhangiani, Brian Lindshield, Andrew McKinney, Nathan Smith, and Heather White.
Word Count: 81533
ISBN: 978-1-64816-983-0
(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)
This UK report presents the findings and recommendations of the Independent Review …
This UK report presents the findings and recommendations of the Independent Review of the Role of Metrics in Research Assessment and Management. The review was chaired by Professor James Wilsdon, supported by an independent and multidisciplinary group of experts in scientometrics, research funding, research policy, publishing, university management and administration. This review has gone beyond earlier studies to take a deeper look at potential uses and limitations of research metrics and indicators. It has explored the use of metrics across different disciplines, and assessed their potential contribution to the development of research excellence and impact. It has analysed their role in processes of research assessment, including the next cycle of the Research Excellence Framework (REF). It has considered the changing ways in which universities are using quantitative indicators in their management systems, and the growing power of league tables and rankings. And it has considered the negative or unintended effects of metrics on various aspects of research culture. The report starts by tracing the history of metrics in research management and assessment, in the UK and internationally. It looks at the applicability of metrics within different research cultures, compares the peer review system with metric-based alternatives, and considers what balance might be struck between the two. It charts the development of research management systems within institutions, and examines the effects of the growing use of quantitative indicators on different aspects of research culture, including performance management, equality, diversity, interdisciplinarity, and the ‘gaming’ of assessment systems. The review looks at how different funders are using quantitative indicators, and considers their potential role in research and innovation policy. Finally, it examines the role that metrics played in REF2014, and outlines scenarios for their contribution to future exercises.
This lesson in part of Software Carpentry workshop and teach novice programmers …
This lesson in part of Software Carpentry workshop and teach novice programmers to write modular code and best practices for using R for data analysis. an introduction to R for non-programmers using gapminder data The goal of this lesson is to teach novice programmers to write modular code and best practices for using R for data analysis. R is commonly used in many scientific disciplines for statistical analysis and its array of third-party packages. We find that many scientists who come to Software Carpentry workshops use R and want to learn more. The emphasis of these materials is to give attendees a strong foundation in the fundamentals of R, and to teach best practices for scientific computing: breaking down analyses into modular units, task automation, and encapsulation. Note that this workshop will focus on teaching the fundamentals of the programming language R, and will not teach statistical analysis. The lesson contains more material than can be taught in a day. The instructor notes page has some suggested lesson plans suitable for a one or half day workshop. A variety of third party packages are used throughout this workshop. These are not necessarily the best, nor are they comprehensive, but they are packages we find useful, and have been chosen primarily for their usability.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.