Updating search results...

Search Resources

2 Results

View
Selected filters:
Data sharing and reanalysis of randomized controlled trials in leading biomedical journals with a full data sharing policy: survey of studies published in The BMJ and PLOS Medicine
Rating
0.0 stars

Objectives To explore the effectiveness of data sharing by randomized controlled trials (RCTs) in journals with a full data sharing policy and to describe potential difficulties encountered in the process of performing reanalyses of the primary outcomes. Design Survey of published RCTs. Setting PubMed/Medline. Eligibility criteria RCTs that had been submitted and published by The BMJ and PLOS Medicine subsequent to the adoption of data sharing policies by these journals. Main outcome measure The primary outcome was data availability, defined as the eventual receipt of complete data with clear labelling. Primary outcomes were reanalyzed to assess to what extent studies were reproduced. Difficulties encountered were described. Results 37 RCTs (21 from The BMJ and 16 from PLOS Medicine) published between 2013 and 2016 met the eligibility criteria. 17/37 (46%, 95% confidence interval 30% to 62%) satisfied the definition of data availability and 14 of the 17 (82%, 59% to 94%) were fully reproduced on all their primary outcomes. Of the remaining RCTs, errors were identified in two but reached similar conclusions and one paper did not provide enough information in the Methods section to reproduce the analyses. Difficulties identified included problems in contacting corresponding authors and lack of resources on their behalf in preparing the datasets. In addition, there was a range of different data sharing practices across study groups. Conclusions Data availability was not optimal in two journals with a strong policy for data sharing. When investigators shared data, most reanalyses largely reproduced the original results. Data sharing practices need to become more widespread and streamlined to allow meaningful reanalyses and reuse of data. Trial registration Open Science Framework osf.io/c4zke.

Author:
Charlotte Sakarovitch
Daniele Fanelli
David Moher
Florian Naudet
Ioana Cristea
John P. A. Ioannidis
Perrine Janiaud
Date Added:
08/08/2020
Meta-assessment of bias in science
Unrestricted Use
CC BY
Rating
0.0 stars

Numerous biases are believed to affect the scientific literature, but their actual prevalence across disciplines is unknown. To gain a comprehensive picture of the potential imprint of bias in science, we probed for the most commonly postulated bias-related patterns and risk factors, in a large random sample of meta-analyses taken from all disciplines. The magnitude of these biases varied widely across fields and was overall relatively small. However, we consistently observed a significant risk of small, early, and highly cited studies to overestimate effects and of studies not published in peer-reviewed journals to underestimate them. We also found at least partial confirmation of previous evidence suggesting that US studies and early studies might report more extreme effects, although these effects were smaller and more heterogeneously distributed across meta-analyses and disciplines. Authors publishing at high rates and receiving many citations were, overall, not at greater risk of bias. However, effect sizes were likely to be overestimated by early-career researchers, those working in small or long-distance collaborations, and those responsible for scientific misconduct, supporting hypotheses that connect bias to situational factors, lack of mutual control, and individual integrity. Some of these patterns and risk factors might have modestly increased in intensity over time, particularly in the social sciences. Our findings suggest that, besides one being routinely cautious that published small, highly-cited, and earlier studies may yield inflated results, the feasibility and costs of interventions to attenuate biases in the literature might need to be discussed on a discipline-specific and topic-specific basis.

Subject:
Applied Science
Biology
Health, Medicine and Nursing
Life Science
Physical Science
Social Science
Material Type:
Reading
Provider:
National Academy of Sciences
Author:
Daniele Fanelli
John P. A. Ioannidis
Rodrigo Costas
Date Added:
08/07/2020