Updating search results...

Search Resources

5 Results

View
Selected filters:
Data Analysis and Visualization in R for Ecologists
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry lesson from Ecology curriculum to learn how to analyse and visualise ecological data in R. Data Carpentry’s aim is to teach researchers basic concepts, skills, and tools for working with data so that they can get more done in less time, and with less pain. The lessons below were designed for those interested in working with ecology data in R. This is an introduction to R designed for participants with no programming experience. These lessons can be taught in a day (~ 6 hours). They start with some basic information about R syntax, the RStudio interface, and move through how to import CSV files, the structure of data frames, how to deal with factors, how to add/remove rows and columns, how to calculate summary statistics from a data frame, and a brief introduction to plotting. The last lesson demonstrates how to work with databases directly from R.

Subject:
Applied Science
Computer Science
Ecology
Information Science
Life Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Ankenbrand, Markus
Arindam Basu
Ashander, Jaime
Bahlai, Christie
Bailey, Alistair
Becker, Erin Alison
Bledsoe, Ellen
Boehm, Fred
Bolker, Ben
Bouquin, Daina
Burge, Olivia Rata
Burle, Marie-Helene
Carchedi, Nick
Chatzidimitriou, Kyriakos
Chiapello, Marco
Conrado, Ana Costa
Cortijo, Sandra
Cranston, Karen
Cuesta, Sergio Martínez
Culshaw-Maurer, Michael
Czapanskiy, Max
Daijiang Li
Dashnow, Harriet
Daskalova, Gergana
Deer, Lachlan
Direk, Kenan
Dunic, Jillian
Elahi, Robin
Fishman, Dmytro
Fouilloux, Anne
Fournier, Auriel
Gan, Emilia
Goswami, Shubhang
Guillou, Stéphane
Hancock, Stacey
Hardenberg, Achaz Von
Harrison, Paul
Hart, Ted
Herr, Joshua R.
Hertweck, Kate
Hodges, Toby
Hulshof, Catherine
Humburg, Peter
Jean, Martin
Johnson, Carolina
Johnson, Kayla
Johnston, Myfanwy
Jordan, Kari L
K. A. S. Mislan
Kaupp, Jake
Keane, Jonathan
Kerchner, Dan
Klinges, David
Koontz, Michael
Leinweber, Katrin
Lepore, Mauro Luciano
Li, Ye
Lijnzaad, Philip
Lotterhos, Katie
Mannheimer, Sara
Marwick, Ben
Michonneau, François
Millar, Justin
Moreno, Melissa
Najko Jahn
Obeng, Adam
Odom, Gabriel J.
Pauloo, Richard
Pawlik, Aleksandra Natalia
Pearse, Will
Peck, Kayla
Pederson, Steve
Peek, Ryan
Pletzer, Alex
Quinn, Danielle
Rajeg, Gede Primahadi Wijaya
Reiter, Taylor
Rodriguez-Sanchez, Francisco
Sandmann, Thomas
Seok, Brian
Sfn_brt
Shiklomanov, Alexey
Shivshankar Umashankar
Stachelek, Joseph
Strauss, Eli
Sumedh
Switzer, Callin
Tarkowski, Leszek
Tavares, Hugo
Teal, Tracy
Theobold, Allison
Tirok, Katrin
Tylén, Kristian
Vanichkina, Darya
Voter, Carolyn
Webster, Tara
Weisner, Michael
White, Ethan P
Wilson, Earle
Woo, Kara
Wright, April
Yanco, Scott
Ye, Hao
Date Added:
03/20/2017
Data Wrangling and Processing for Genomics
Unrestricted Use
CC BY
Rating
0.0 stars

Data Carpentry lesson to learn how to use command-line tools to perform quality control, align reads to a reference genome, and identify and visualize between-sample variation. A lot of genomics analysis is done using command-line tools for three reasons: 1) you will often be working with a large number of files, and working through the command-line rather than through a graphical user interface (GUI) allows you to automate repetitive tasks, 2) you will often need more compute power than is available on your personal computer, and connecting to and interacting with remote computers requires a command-line interface, and 3) you will often need to customize your analyses, and command-line tools often enable more customization than the corresponding GUI tools (if in fact a GUI tool even exists). In a previous lesson, you learned how to use the bash shell to interact with your computer through a command line interface. In this lesson, you will be applying this new knowledge to carry out a common genomics workflow - identifying variants among sequencing samples taken from multiple individuals within a population. We will be starting with a set of sequenced reads (.fastq files), performing some quality control steps, aligning those reads to a reference genome, and ending by identifying and visualizing variations among these samples. As you progress through this lesson, keep in mind that, even if you aren’t going to be doing this same workflow in your research, you will be learning some very important lessons about using command-line bioinformatic tools. What you learn here will enable you to use a variety of bioinformatic tools with confidence and greatly enhance your research efficiency and productivity.

Subject:
Applied Science
Computer Science
Genetics
Information Science
Life Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Adam Thomas
Ahmed R. Hasan
Aniello Infante
Anita Schürch
Dev Paudel
Erin Alison Becker
Fotis Psomopoulos
François Michonneau
Gaius Augustus
Gregg TeHennepe
Jason Williams
Jessica Elizabeth Mizzi
Karen Cranston
Kari L Jordan
Kate Crosby
Kevin Weitemier
Lex Nederbragt
Luis Avila
Peter R. Hoyt
Rayna Michelle Harris
Ryan Peek
Sheldon John McKay
Sheldon McKay
Taylor Reiter
Tessa Pierce
Toby Hodges
Tracy Teal
Vasilis Lenis
Winni Kretzschmar
dbmarchant
Date Added:
08/07/2020
Introduction to Communication Research: Becoming a Scholar
Unrestricted Use
CC BY
Rating
0.0 stars

Welcome to your journey to becoming a communication scholar! We developed this workbook to guide you through the semester as you learn how understand and conduct scholarly research. What does it mean to be a scholar? A scholar is someone who specializes in a particular area of study. For you, this area is communication. And how do you become a scholar? By doing research.

But why is it important for you to learn research skills? You might be thinking, I want to be a journalist or make TV shows or work in public relations, why do I need to learn how to do research? Well, if you want someone to watch your TV show, read your article, or listen to your campaign, you will need to conduct research to see if the audience you’re targeting even exists. You will need to research to find out if your ideas are original, what the person you’re interviewing for an article has done in the past, or what makes a successful public relations campaign. You’ll need data in order to pitch your new TV show idea.

To be successful in organizational and business communication, it is essential that you learn how to effectively promote successful communication in any institution. This may include writing training manuals, employee handbooks, or conducting in-depth personnel research to ensure overall satisfaction of employees. Also, scholarly research is the foundation of any discipline, and many of the core principles of this field are derived from scholarly research.

Because we want you to succeed in the industry, we will spend the semester learning how to conduct research in the field of communication. We’ll start by providing you with a short history of communication research, show you how to gather academic research, and teach you how to write a literature review. Let's get started!

Subject:
Business and Communication
Communication
Material Type:
Textbook
Provider:
University System of Georgia
Provider Set:
Galileo Open Learning Materials
Author:
Erin Ryan
Karen Sichler
Lindsey Hand
Date Added:
11/01/2020
Library Carpentry: Introduction to Git
Unrestricted Use
CC BY
Rating
0.0 stars

Library Carpentry lesson: An introduction to Git. What We Will Try to Do Begin to understand and use Git/GitHub. You will not be an expert by the end of the class. You will probably not even feel very comfortable using Git. This is okay. We want to make a start but, as with any skill, using Git takes practice. Be Excellent to Each Other If you spot someone in the class who is struggling with something and you think you know how to help, please give them a hand. Try not to do the task for them: instead explain the steps they need to take and what these steps will achieve. Be Patient With The Instructor and Yourself This is a big group, with different levels of knowledge, different computer systems. This isn’t your instructor’s full-time job (though if someone wants to pay them to play with computers all day they’d probably accept). They will do their best to make this session useful. This is your session. If you feel we are going too fast, then please put up a pink sticky. We can decide as a group what to cover.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Alex Mendes
Alexander Gary Zimmerman
Alexander Mendes
Amiya Maji
Amy Olex
Andrew Lonsdale
Annika Rockenberger
Begüm D. Topçuoğlu
Belinda Weaver
Benjamin Bolker
Bill McMillin
Brian Moore
Casey Youngflesh
Christoph Junghans
Christopher Erdmann
DSTraining
Dan Michael O. Heggø
David Jennings
Erin Alison Becker
Evan Williamson
Garrett Bachant
Grant Sayer
Ian Lee
Jake Lever
Jamene Brooks-Kieffer
James Baker
James E McClure
James O'Donnell
James Tocknell
Janoš Vidali
Jeffrey Oliver
Jeremy Teitelbaum
Jeyashree Krishnan
Joe Atzberger
Jonah Duckles
Jonathan Cooper
João Rodrigues
Katherine Koziar
Katrin Leinweber
Kunal Marwaha
Kurt Glaesemann
L.C. Karssen
Lauren Ko
Lex Nederbragt
Madicken Munk
Maneesha Sane
Marie-Helene Burle
Mark Woodbridge
Martino Sorbaro
Matt Critchlow
Matteo Ceschia
Matthew Bourque
Matthew Hartley
Maxim Belkin
Megan Potterbusch
Michael Torpey
Michael Zingale
Mingsheng Zhang
Nicola Soranzo
Nima Hejazi
Nora McGregor
Oscar Arbeláez
Peace Ossom Williamson
Raniere Silva
Rayna Harris
Rene Gassmoeller
Rich McCue
Richard Barnes
Ruud Steltenpool
Ryan Wick
Rémi Emonet
Samniqueka Halsey
Samuel Lelièvre
Sarah Stevens
Saskia Hiltemann
Schlauch, Tobias
Scott Bailey
Shari Laster
Simon Waldman
Stefan Siegert
Thea Atwood
Thomas Morrell
Tim Dennis
Tommy Keswick
Tracy Teal
Trevor Keller
TrevorLeeCline
Tyler Crawford Kelly
Tyler Reddy
Umihiko Hoshijima
Veronica Ikeshoji-Orlati
Wes Harrell
Will Usher
William Sacks
Wolmar Nyberg Åkerström
Yuri
abracarambar
ajtag
butterflyskip
cmjt
hdinkel
jonestoddcm
pllim
Date Added:
08/07/2020
Plotting and Programming in Python
Unrestricted Use
CC BY
Rating
0.0 stars

This lesson is part of Software Carpentry workshops and teach an introduction to plotting and programming using python. This lesson is an introduction to programming in Python for people with little or no previous programming experience. It uses plotting as its motivating example, and is designed to be used in both Data Carpentry and Software Carpentry workshops. This lesson references JupyterLab, but can be taught using a regular Python interpreter as well. Please note that this lesson uses Python 3 rather than Python 2.

Subject:
Applied Science
Computer Science
Information Science
Mathematics
Measurement and Data
Material Type:
Module
Provider:
The Carpentries
Author:
Adam Steer
Allen Lee
Andreas Hilboll
Ashley Champagne
Benjamin
Benjamin Roberts
CanWood
Carlos Henrique Brandt
Carlos M Ortiz Marrero
Cephalopd
Cian Wilson
Dan Mønster
Daniel W Kerchner
Daria Orlowska
Dave Lampert
David Matten
Erin Alison Becker
Florian Goth
Francisco J. Martínez
Greg Wilson
Jacob Deppen
Jarno Rantaharju
Jeremy Zucker
Jonah Duckles
Kees den Heijer
Keith Gilbertson
Kyle E Niemeyer
Lex Nederbragt
Logan Cox
Louis Vernon
Lucy Dorothy Whalley
Madeleine Bonsma-Fisher
Mark Phillips
Mark Slater
Maxim Belkin
Michael Beyeler
Mike Henry
Narayanan Raghupathy
Nigel Bosch
Olav Vahtras
Pablo Hernandez-Cerdan
Paul Anzel
Phil Tooley
Raniere Silva
Robert Woodward
Ryan Avery
Ryan Gregory James
SBolo
Sarah M Brown
Shyam Dwaraknath
Sourav Singh
Steven Koenig
Stéphane Guillou
Taylor Smith
Thor Wikfeldt
Timothy Warren
Tyler Martin
Vasu Venkateshwaran
Vikas Pejaver
ian
mzc9
Date Added:
08/07/2020