The Open Science movement is rapidly changing the scientific landscape. Because exact …
The Open Science movement is rapidly changing the scientific landscape. Because exact definitions are often lacking and reforms are constantly evolving, accessible guides to open science are needed. This paper provides an introduction to open science and related reforms in the form of an annotated reading list of seven peer-reviewed articles, following the format of Etz et al. (2018). Written for researchers and students - particularly in psychological science - it highlights and introduces seven topics: understanding open science; open access; open data, materials, and code; reproducible analyses; preregistration and registered reports; replication research; and teaching open science. For each topic, we provide a detailed summary of one particularly informative and actionable article and suggest several further resources. Supporting a broader understanding of open science issues, this overview should enable researchers to engage with, improve, and implement current open, transparent, reproducible, replicable, and cumulative scientific practices.
In recent years, open science practices have become increasingly popular in psychology …
In recent years, open science practices have become increasingly popular in psychology and related sciences. These practices aim to increase rigour and transparency in science as a potential response to the challenges posed by the replication crisis. Many of these reforms -- including the highly influential preregistration -- have been designed for experimental work that tests simple hypotheses with standard statistical analyses, such as assessing whether an experimental manipulation has an effect on a variable of interest. However, psychology is a diverse field of research, and the somewhat narrow focus of the prevalent discussions surrounding and templates for preregistration has led to debates on how appropriate these reforms are for areas of research with more diverse hypotheses and more complex methods of analysis, such as cognitive modelling research within mathematical psychology. Our article attempts to bridge the gap between open science and mathematical psychology, focusing on the type of cognitive modelling that Crüwell, Stefan, & Evans (2019) labelled model application, where researchers apply a cognitive model as a measurement tool to test hypotheses about parameters of the cognitive model. Specifically, we (1) discuss several potential researcher degrees of freedom within model application, (2) provide the first preregistration template for model application, and (3) provide an example of a preregistered model application using our preregistration template. More broadly, we hope that our discussions and proposals constructively advance the debate surrounding preregistration in cognitive modelling, and provide a guide for how preregistration templates may be developed in other diverse or complex research contexts.
The open science movement is rapidly changing the scientific landscape. Because exact …
The open science movement is rapidly changing the scientific landscape. Because exact definitions are often lacking and reforms are constantly evolving, accessible guides to open science are needed. This paper provides an introduction to open science and related reforms in the form of an annotated reading list of seven peer-reviewed articles, following the format of Etz, Gronau, Dablander, Edelsbrunner, and Baribault (2018). Written for researchers and students – particularly in psychological science – it highlights and introduces seven topics: understanding open science; open access; open data, materials, and code; reproducible analyses; preregistration and registered reports; replication research; and teaching open science. For each topic, we provide a detailed summary of one particularly informative and actionable article and suggest several further resources. Supporting a broader understanding of open science issues, this overview should enable researchers to engage with, improve, and implement current open, transparent, reproducible, replicable, and cumulative scientific practices.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.