In which Hank does some push-ups for science and describes the "economy" …
In which Hank does some push-ups for science and describes the "economy" of cellular respiration and the various processes whereby our bodies create energy in the form of ATP.
Chapters: 1) Cellular Respiration 2) Adenosine Triphosphate 3) Glycolysis A) Pyruvate Molecules B) Anaerobic Respiration/Fermentation C) Aerobic Respiration 4) Krebs Cycle A) Acetyl COA B) Oxaloacetic Acid C) Biolography: Hans Krebs D) NAD/FAD 5) Electron Transport Chain 6) Check the Math Review
In this seminar you will read closely and analyze the structure of …
In this seminar you will read closely and analyze the structure of ATP- Adenosine Triphosphate. You will curate your own information about the importance of ATP in a cell by listening and reading text as to what the experts have to say. By modeling the function of ATP in an inquiry lab you can accurately identify the various levels of cellular work done by Adenosine Triphosphate.StandardsBIO.A.3.1.1 Describe the fundamental roles of plastids (e.g., chloroplasts) and mitochondria in energy transformations.BIO.A.3.2.1 Compare and contrast the basic transformation of energy during photosynthesis and cellular respiration.BIO.A.3.2.2 Describe the role of ATP in biochemical reactions
Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
By the end of this section, you will be able to:Discuss the …
By the end of this section, you will be able to:Discuss the importance of electrons in the transfer of energy in living systemsExplain how ATP is used by the cell as an energy source
By the end of this section, you will be able to:Discuss the …
By the end of this section, you will be able to:Discuss the importance of electrons in the transfer of energy in living systemsExplain how ATP is used by the cell as an energy source
By the end of this section, you will be able to:Explain the …
By the end of this section, you will be able to:Explain the role of ATP as the cellular energy currencyDescribe how energy is released through hydrolysis of ATP
By the end of this section, you will be able to:Explain the …
By the end of this section, you will be able to:Explain the role of ATP as the cellular energy currencyDescribe how energy is released through hydrolysis of ATP
Movement of ions in and out of cells is crucial to maintaining …
Movement of ions in and out of cells is crucial to maintaining homeostasis within the body and ensuring that biological functions run properly. The natural movement of molecules due to collisions is called diffusion. Several factors affect diffusion rate: concentration, surface area, and molecular pumps. This activity demonstrates diffusion, osmosis, and active transport through 12 interactive models.
Students learn about the basic principles of electromicrobiology—the study of microorganisms’ electrical …
Students learn about the basic principles of electromicrobiology—the study of microorganisms’ electrical properties—and the potential that these microorganisms may have as a next-generation source of sustainable energy. They are introduced to one such promising source: microbial fuel cells (MFCs). Using the metabolisms of microbes to generate electrical current, MFCs can harvest bioelectricity, or energy, from the processes of photosynthesis and cellular respiration. Students learn about the basics of MFCs and how they function as well as the chemical processes of photosynthesis and cellular respiration
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.